Published on in Vol 3, No 1 (2017): Jan-Jun

Rotterdam Prostate Cancer Risk Calculator: Development and Usability Testing of the Mobile Phone App

Rotterdam Prostate Cancer Risk Calculator: Development and Usability Testing of the Mobile Phone App

Rotterdam Prostate Cancer Risk Calculator: Development and Usability Testing of the Mobile Phone App

Journals

  1. Lippi G, Mattiuzzi C, Plebani M. PSA-based, prostate cancer risk on-line calculators: no such thing as a crystal ball?. Diagnosis 2018;5(4):253 View
  2. Jamnadass E, Rai B, Veneziano D, Tokas T, Rivas J, Cacciamani G, Somani B. Do prostate cancer-related mobile phone apps have a role in contemporary prostate cancer management? A systematic review by EAU young academic urologists (YAU) urotechnology group. World Journal of Urology 2020;38(10):2411 View
  3. Tikka T, Paleri V, MacKenzie K. External validation of a cancer risk prediction model for suspected head and neck cancer referrals. Clinical Otolaryngology 2018;43(2):714 View
  4. Osses D, Roobol M, Schoots I. Prediction Medicine: Biomarkers, Risk Calculators and Magnetic Resonance Imaging as Risk Stratification Tools in Prostate Cancer Diagnosis. International Journal of Molecular Sciences 2019;20(7):1637 View
  5. Tapiero S, Yoon R, Jefferson F, Sung J, Limfueco L, Cottone C, Lu S, Patel R, Landman J, Clayman R. Smartphone technology and its applications in urology: a review of the literature. World Journal of Urology 2020;38(10):2393 View
  6. McNally C, Ruddock M, Moore T, McKenna D. <p>Biomarkers That Differentiate Benign Prostatic Hyperplasia from Prostate Cancer: A Literature Review</p>. Cancer Management and Research 2020;Volume 12:5225 View
  7. Nakai Y, Miyake M, Anai S, Hori S, Tatsumi Y, Morizawa Y, Onisi S, Tanaka N, Fujimoto K. Spectrophotometric photodynamic diagnosis of prostate cancer cells excreted in voided urine using 5-aminolevulinic acid. Lasers in Medical Science 2018;33(7):1557 View
  8. Castaneda P, Ellimoottil C. Current use of telehealth in urology: a review. World Journal of Urology 2020;38(10):2377 View
  9. Govorko M, Fritschi L, White J, Reid A. Identifying Asbestos-Containing Materials in Homes: Design and Development of the ACM Check Mobile Phone App. JMIR Formative Research 2017;1(1):e7 View
  10. Remmers S, Roobol M. Personalized strategies in population screening for prostate cancer. International Journal of Cancer 2020;147(11):2977 View
  11. Salmani H, Ahmadi M, Shahrokhi N. The Impact of Mobile Health on Cancer Screening: A Systematic Review. Cancer Informatics 2020;19 View
  12. Lombardo R, Tema G, Cancrini F, Albanesi L, Mavilla L, Tariciotti P, Gentile B, Aloisi P, Rizzo G, Tardioli S, Giulianelli R. The role of immune PSA complex (iXip) in the prediction of prostate cancer. Biomarkers 2021;26(1):26 View
  13. Chen I, Chu C, Lin J, Tsai J, Yu C, Sridhar A, Sooriakumaran P, Loureiro R, Chand M. Prostate Cancer Risk Calculator Apps in a Taiwanese Population Cohort: Validation Study. Journal of Medical Internet Research 2020;22(12):e16322 View
  14. Tully K, Bahlburg H, Berg S, Hanske J, von Landenberg N, Noldus J, Palisaar R, Roghmann F, Brock M. Changing the Prostate Cancer Detection Paradigm: Clinical Application of European Association of Urology Guideline–recommended Magnetic Resonance Imaging–based Risk Stratification in Men with Suspected Prostate Cancer. European Urology Focus 2021;7(5):1011 View
  15. De Nunzio C, Lombardo R, Baldassarri V, Cindolo L, Bertolo R, Minervini A, Sessa F, Muto G, Bove P, Vittori M, Bozzini G, Castellan P, Mugavero F, Falsaperla M, Schips L, Celia A, Bada M, Porreca A, Pastore A, Al Salhi Y, Giampaoli M, Novella G, Rizzetto R, Trabacchin N, Mantica G, Pini G, Remmers S, Antonelli A, Tubaro A. Rotterdam mobile phone app including MRI data for the prediction of prostate cancer: A multicenter external validation. European Journal of Surgical Oncology 2021;47(10):2640 View
  16. Chiu P, Shen X, Wang G, Ho C, Leung C, Ng C, Choi K, Teoh J. Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study. Prostate Cancer and Prostatic Diseases 2022;25(4):672 View
  17. Loeb S, Black P, Wyatt A, Nyame Y, Shore N, Tilki D, Castro E, Cooperberg M, Giri V, Ribal M, Lughezzani G, Sánchez-Salas R, Moore C, Rastinehad A, Kerkmeijer L, Ahmed H, Akamatsu S, de la Taille A, Gleave M, Tanguay S. B2B: Prostate Cancer. Société Internationale d’Urologie Journal 2021;2(Supplement 1):S30 View
  18. Bandala-Jacques A, Castellanos Esquivel K, Pérez-Hurtado F, Hernández-Silva C, Reynoso-Noverón N. Prostate Cancer Risk Calculators for Healthy Populations: Systematic Review. JMIR Cancer 2021;7(3):e30430 View
  19. Díaz-Fernández F, Celma A, Salazar A, Moreno O, López C, Cuadras M, Regis L, Planas J, Morote J, Trilla E. Systematic review of methods used to improve the efficacy of magnetic resonance in early detection of clinically significant prostate cancer. Actas Urológicas Españolas (English Edition) 2023;47(3):127 View
  20. Berg S, Tully K, von Landenberg N, Bahlburg H, Roghmann F, Müller G, Hanske J, Noldus J, Brock M. How Many Cores Should Be Sampled during Systematic Prostate Biopsy in Case of Negative Multiparametric Magnetic Resonance Imaging? Analysis of 274 Men with Clinical Suspicion of Prostate Cancer. Urologia Internationalis 2022;106(9):914 View
  21. Gebeyehu S, Twinomurinzi H. A Collaborative Consumption Digital Platform for Government Organizations using Design Science. Digital Government: Research and Practice 2022;3(1):1 View
  22. Murtha J, Liu N, Birstler J, Hanlon B, Venkatesh M, Hanrahan L, Borza T, Kushner D, Funk L. Obesity and “obesity-related” cancers: are there body mass index cut-points?. International Journal of Obesity 2022;46(10):1770 View
  23. Stocks J, Choi Y, Ibrahim S, Huchko M. Iterative Development of a Mobile Phone App to Support Community Health Volunteers During Cervical Cancer Screening in Western Kenya: Qualitative Study. JMIR Formative Research 2022;6(2):e27501 View
  24. Pospelova I, Bragin D, Cherepanova I, Serebryakova V, Sokolov A, Kaveshnikov V. Development of Mobile Application for Assessment of Basic Echocardiographic Parameters in Apparently Healthy Population. Telemedicine and e-Health 2021 View
  25. Díaz-Fernández F, Celma A, Salazar A, Moreno O, López C, Cuadras M, Regis L, Planas J, Morote J, Trilla E. Revisión sistemática de los métodos para incrementar la eficacia de la resonancia magnética en el diagnóstico precoz de cáncer de próstata clínicamente significativo. Actas Urológicas Españolas 2023;47(3):127 View
  26. Berg S, Tully K, Hoffmann V, Bahlburg H, Roghmann F, Müller G, Noldus J, Reike M. Assessment of complications after transperineal and transrectal prostate biopsy using a risk-stratified pathway identifying patients at risk for post-biopsy infections. Scandinavian Journal of Urology 2023;57(1-6):41 View
  27. van Breugel S, Low I, Christie M, Pokorny M, Nagarajan R, Holtkamp H, Srinivasa K, Amirapu S, Nieuwoudt M, Simpson M, Zargar‐Shoshtari K, Aguergaray C. Raman spectroscopy system for real‐time diagnosis of clinically significant prostate cancer tissue. Journal of Biophotonics 2023;16(5) View
  28. Greenberg J, Koller C, Casado C, Triche B, Krane L. A narrative review of biparametric MRI (bpMRI) implementation on screening, detection, and the overall accuracy for prostate cancer. Therapeutic Advances in Urology 2022;14 View
  29. Handke A, Albers P, Schimmöller L, Bonekamp D, Asbach P, Schlemmer H, Hadaschik B, Radtke J. Systematische oder gezielte Fusionsbiopsie der Prostata. Die Urologie 2023;62(5):464 View
  30. Dite G, Spaeth E, Murphy N, Allman R. Development and validation of a simple prostate cancer risk prediction model based on age, family history, and polygenic risk. The Prostate 2023;83(10):962 View
  31. Bahlburg H, Tully K, Hoffmann V, Hanske J, von Landenberg N, Roghmann F, Palisaar R, Noldus J, Berg S, Brock M. Avoiding Prostate Biopsies in Patients at Low Risk for Prostate Cancer: A Prospective Evaluation of a PSA-Density-Based Safety Net. Urologia Internationalis 2023;107(5):454 View
  32. Bouarroudj K, Kitouni I, Lechekhab A, Leghelimi Z, Kara I. Quality evaluation of commercially available healthcare applications for prostate cancer management. Multimedia Tools and Applications 2023;82(20):31793 View
  33. Singh A, Randive S, Breggia A, Ahmad B, Christman R, Amal S. Enhancing Prostate Cancer Diagnosis with a Novel Artificial Intelligence-Based Web Application: Synergizing Deep Learning Models, Multimodal Data, and Insights from Usability Study with Pathologists. Cancers 2023;15(23):5659 View
  34. Lieslehto J, Tiihonen J, Lähteenvuo M, Leucht S, Correll C, Mittendorfer-Rutz E, Tanskanen A, Taipale H. Development and Validation of a Machine Learning–Based Model of Mortality Risk in First-Episode Psychosis. JAMA Network Open 2024;7(3):e240640 View

Books/Policy Documents

  1. de Aguiar Barbosa A. Evaluation of Novel Approaches to Software Engineering. View
  2. Teles A, Barros F, Rodrigues I, Barbosa A, Silva F, Coutinho L, Teixeira S. IoT and ICT for Healthcare Applications. View
  3. McGrowder D, Miller F, Brown J, Wilson-Clarke C, Anderson-Jackson L. Diagnostic Applications of Health Intelligence and Surveillance Systems. View
  4. Kalra R, Gupta M, Sharma P. Next Generation eHealth. View