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Abstract

Background: Postprostatectomy incontinence (PPI) is a common complication after robot-assisted radical prostatectomy and
significantly impairs patients’ quality of life. Although behavioral interventions such as pelvic floor muscle training and bladder
diaries are evidence-based, their effectiveness is often limited by poor adherence and lack of personalization.

Objective: This study aimed to develop and evaluate a reinforcement learning (RL)–driven clinical behavioral
intervention-supporting system (CBISs) for adaptive, personalized rehabilitation in patients with PPI.

Methods: The study comprised 2 sequential stages. First, the CBISs was developed through (1) construction of a medical record
database from a prospective cohort of PPI patients using standardized 3-day bladder diaries, (2) design of functional modules
and user interfaces based on clinical rehabilitation needs, and (3) development of an RL model using XGBoost (extreme gradient
boosting) and Bayesian optimization to generate individualized training plans. Second, a separate cohort of 16 patients participated
in a single-arm, pre-post pilot study to evaluate feasibility and preliminary outcome trends over a 3-month intervention period,
with assessments based on bladder diary parameters and system usage metrics.

Results: The CBISs successfully implemented an adaptive, closed-loop behavioral rehabilitation framework that dynamically
tailored training recommendations according to individual voiding patterns, fluid intake behaviors, and adherence signals.
Feasibility outcomes were favorable, with high system engagement observed throughout the intervention (mean usage frequency
5.2, SD 1.1 times per day). In exploratory pre-post analyses (n=16), consistent directional improvements were observed across
multiple outcomes. Mean daytime urinary frequency decreased from 5.74 (SD 1.21) episodes per day to 4.69 (SD 1.08) episodes
per day, while median nighttime urinary frequency declined from 1.8 (IQR 1.6-2.2) episodes per night to 1.0 (IQR 1.0-1.6)
episodes per night. Median incontinence episodes were reduced from 7.0 (IQR 6.0-11.0) episodes per day to 4.0 (IQR 2.0-6.0)
episodes per day. Objective urine leakage measured by the 1-hour pad test decreased from a median of 8.5 (IQR 4.0-19.0) g to
3.5 (IQR 2.0-9.0) g. Patient-reported symptom burden, assessed using the International Consultation on Incontinence
Questionnaire–Short Form (ICIQ-UI SF), showed a median reduction from 14.0 (IQR 12.0-20.0) points to 9.0 (IQR 6.0-16.0)
points. Although several within-participant changes were statistically detectable, effect magnitudes varied across individuals.
Given the single-arm design, small sample size, and lack of a control group, findings are presented as exploratory and
hypothesis-generating rather than confirmatory of clinical efficacy.
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Conclusions: The CBISs represents the first RL-powered digital therapeutic system for PPI, enabling adaptive, evidence-based
behavioral optimization. By addressing limitations of static rehabilitation protocols and declining adherence, it offers a scalable
approach for personalized PPI management. Future multicenter trials are needed to confirm its clinical effectiveness.

(JMIR Cancer 2026;12:e83375) doi: 10.2196/83375
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Introduction

Prostate cancer (PCa) is one of the most prevalent malignant
tumors in men and currently represents the second leading cause
of cancer-related mortality worldwide [1]. It is estimated that
by 2025, approximately 313,780 new cases of PCa will be
diagnosed in the United States, accounting for 15.4% of all
newly diagnosed cancers [2]. Over the past decade,
robot-assisted radical prostatectomy has been increasingly
recognized as a primary treatment for localized PCa [3]. Owing
to the removal of the prostate, seminal vesicles, and surrounding
tissues, as well as the reconstruction of the urinary tract during
surgery, patients frequently experience varying degrees of
postoperative bladder dysfunction. Among these complications,
postprostatectomy incontinence (PPI) is the most common
functional sequela, severely affecting patients’ daily activities,
sexual function, and overall quality of life (QoL) [4-6]. The
reported incidence of PPI varies widely, ranging from
approximately 4.2% to 87%, largely due to differences in
definitions of urinary incontinence, follow-up duration, and
assessment methodologies [7]. PPI symptoms typically persist
for 3-12 months and, in some cases, may extend for up to 10
years, rendering urinary incontinence a major long-term concern
during postoperative recovery [8,9]. Consequently, improving
PPI and related QoL outcomes remains a central objective in
the comprehensive management of survivors of PCa [10].

Behavioral therapies, including pelvic floor muscle training
(PFMT), bladder retraining, urge suppression techniques, and
lifestyle modification, constitute the cornerstone of conservative
management for urinary incontinence. High-quality evidence
from systematic reviews and meta-analyses, including Cochrane
reviews, has consistently demonstrated that behavioral
therapy–based interventions can reduce incontinence episodes
and improve patient-reported QoL across diverse populations
[11,12]. These interventions are widely recommended as
first-line or adjunctive strategies in clinical practice, reflecting
their favorable safety profiles and broad applicability.
Nevertheless, the effectiveness of behavioral rehabilitation in
real-world settings is frequently compromised by inadequate
adherence, limited access to professional supervision, and
insufficient patient understanding of correct training techniques.

Advancing from this foundation, digital therapeutics (DTx)
have emerged as a promising modality for delivering structured
rehabilitation programs remotely, thereby improving
accessibility and continuity of care for patients following
postprostatectomy. DTx are interventions delivered via digital
platforms [13], which have the potential to mitigate the
challenges posed by chronic diseases, such as enhancing patient

adherence and improving patient self-management [14]. By
enabling real-time monitoring, personalized feedback, and
flexible scheduling, digital platforms may help address many
of the practical limitations inherent in traditional rehabilitation
models [15]. However, many existing digital interventions for
urinary incontinence remain largely static, relying on predefined
rules or uniform training protocols that do not adequately
account for individual variability in symptoms, adherence
patterns, or recovery trajectories.

In this context, reinforcement learning (RL) represents a
promising methodological framework for advancing
personalization within digital therapeutic systems. RL is a
machine learning approach whereby intelligent agents iteratively
optimize decision-making models through cycles of action,
feedback, and strategy adjustment [16]. Unlike traditional
supervised learning methods, RL is particularly well suited to
sequential decision-making problems where the effects of an
action may be delayed, outcomes are uncertain, and the optimal
strategy depends on the evolving state of the individual. In
digital health applications, RL has been used to personalize
“just-in-time” interventions—for example, adapting the timing,
content, or intensity of behavioral prompts—based on each
patient’s history, context, and response pattern, thereby
improving engagement and clinical outcomes compared with
static or rule-based approaches [17]. Moreover, RL models are
capable of processing sparse or noisy reward signals arising
from heterogeneous patient behaviors and complex
intervention-response relationships, making them especially
suitable for individualized rehabilitation scenarios [18].
Applying it to DTx may facilitate individualized patient
rehabilitation training.

In this study, to address the need for personalized rehabilitation,
a Clinical Behavioral Intervention-Supporting System (CBISs)
was developed. Using RL, the CBISs provides adaptive,
individualized training guidance to patients with urinary
incontinence following robot-assisted radical prostatectomy,
aiming to accelerate functional recovery and improve QoL
through data-driven support.

Therefore, the objectives of this study were to develop and
preliminarily evaluate an RL–based CBISs integrated into a
digital therapeutic platform to provide individualized pelvic
floor and behavioral training for men with PPI after
robot-assisted radical prostatectomy. The study was designed
to examine whether an RL-driven CBISs could (1) demonstrate
feasibility and acceptability, with favorable trends in urinary
continence recovery and patient-reported QoL; and (2) enhance
adherence to and engagement with the prescribed training over
time.
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Methods

Overview
The study was structured in two sequential phases, (1) the
development of the CBISs, and (2) a feasibility and preliminary
efficacy pilot test of the CBISs conducted with a separate cohort
of 16 patients. The development of the CBISs consisted of three
main stages, (1) construction of a clinical behavioral database,
(2) design of system functionalities and user interfaces based
on rehabilitation needs, and (3) development and integration of
RL models to support individualized training.

Recruitment of Participants
All patients were recruited during the follow-up visit of the
Outpatient Department of Urology at Sun Yat-sen Memorial
Hospital, Sun Yat-sen University. Patients were eligible if they
were aged 18-75 years, had a confirmed diagnosis of urinary
incontinence following radical prostatectomy, and could
accurately maintain a voiding diary (recording fluid intake,
urination, and leakage). Exclusion criteria comprised serious
neurological diseases, concurrent conditions such as urinary
tract infection or bladder stones, significant voiding dysfunction,
and an inability to comply with the study protocol. During the
CBISs construction phase, we recruited a total of 150 patients
to participate.

Database Construction
This section details the complete workflow for building the
analytical database, including the statistical procedures and tests
for data curation and feature engineering, which collectively
form the essential foundation for the subsequent development
of the prediction model. Bladder diaries were prospectively
collected from patients diagnosed with PPI at the urology
department of a tertiary care academic hospital. To ensure data
robustness, a minimum diary period of 3 days was required
based on International Continence Society standards for reliable
symptom capture [19].

Sample size determination addressed two dimensions. At the
patient level, sample size considerations focused on ensuring
sufficient coverage of behavioral variability for model
development rather than hypothesis testing. A cohort of 150
patients was deemed adequate to support feature engineering,
model training, and internal validation while minimizing the
risk of overfitting. At the behavioral event level, more than
10,000 voiding events were targeted to ensure model
generalizability, accounting for expected intrapatient variability
(mean, 8 voids per day per patient). Sample size considerations
therefore accounted not only for the number of patients but also
for the volume of behavioral data, with a 3-day behavioral log
per patient ensuring minimum model generalizability. Ethical
approval for the collection of data required for system
construction was obtained from the Medical Ethics Committee
of Sun Yat-sen Memorial Hospital, Sun Yat-sen University
(approval number: SYSKY -2023-925-01). Data collection was
conducted between March 2022 and December 2023.

Determination of Key Features and System
Functionalities
The research team conducted a systematic literature review and
held 2 rounds of expert meetings to develop a checklist for the
rehabilitation needs of patients with PPI. Based on this,
researchers and software engineers collaborated to define the
functional module division and design the human–computer
interaction interface. The CBISs comprises 3 portals: patient
portal, a health care team portal, and an administrator portal.
The patient portal contains 4 modules: rehabilitation training,
bladder diary, incontinence care, and assessment tool. The health
care team portal displays the patient’s bladder diary details and
training completion status.

Reinforcement Learning Model Construction
The research team developed the conceptual plan and proposed
the functional requirements of the model; algorithm engineers
then constructed and validated the training model, which was
subsequently embedded into the CBISs to complete the design
and development. Individualized rehabilitation training models
for patients with PPI include urination training, fluid intake
training, and PFMT. To realize these features, the algorithm
engineers used a preconstructed database and performed feature
screening and dimensionality reduction through an exhaustive
feature engineering step.

Data Preprocessing and Quality Control
Prior to model training, all raw bladder diary records and
behavioral logs underwent a structured preprocessing pipeline.
Missing values in continuous variables (eg, voided volume and
urination interval) were imputed using patient-level mean
strategy, while discrete variables (eg, fluid type and urgency
score) adopted mode imputation. Abnormal values were detected
through IQR filtering and time-series consistency checks. All
timestamps were normalized to standard 24-hour format, and
temporal alignment of drinking and voiding events was ensured
using sliding-window techniques with a 60-minute threshold.
Records from patients with <80% diary completion rate or >20%
anomalous entries were excluded from analysis to guarantee
robust data quality and integrity.

Feature Selection and Model Training Strategy
From the initial 29 behavioral and physiological features,
recursive feature elimination and XGBoost’s (extreme gradient
boosting’s) intrinsic gain-based importance ranking were jointly
applied to refine input dimensions. Highly collinear features
(Pearson r>0.9) were removed to prevent multicollinearity.
Model development was performed using a stratified 70/15/15
train/validation/test split, preserving the distribution of leakage
severity and adherence levels. Bayesian optimization was used
to fine-tune hyperparameters (eg, learning rate, max_depth, and
subsample) with the goal of maximizing prediction accuracy
and minimizing overfitting. Model performance was evaluated
using a composite metric, including area under the receiver
operating characteristic curve (AUC), F1-score, and mean
absolute error (MAE). A 5-fold cross-validation strategy was
used during the training phase to ensure model generalizability
and robustness.
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Reinforcement Learning Framework and Deployment
The customized offline RL architecture is adopted in the CBISs
to support adaptive behavioral rehabilitation while clinical safety
is maintained. The RL component is designed to function as a
decision-support layer rather than as an autonomous optimizer
of clinical outcomes, reflecting the exploratory nature of this
pilot study.

Clinical state representations are constructed from multiday
behavioral snapshots encompassing key metrics such as PFMT
adherence, voiding intervals, fluid intake ratios, and
patient-reported outcomes. These inputs closely correspond to
the information typically evaluated by clinicians when adjusting
rehabilitation strategies, thereby ensuring that the RL state
definition remains clinically interpretable and grounded in
routine practice.

At each decision point t, the system observes a behavioral state
st and selects an action at from a predefined discrete action
space. Actions correspond to clinically admissible behavioral
interventions; for example, when a patient demonstrates stable
adherence to the prescribed training program but reports
repeated episodes of urinary leakage, the system may
recommend a modest extension of PFMT duration (eg, +15
minutes) while maintaining the current training intensity.
Subsequent adjustments to PFMT intensity are then guided by
changes in the frequency of reported leakage, allowing the
intervention to progress in a gradual and clinically responsive
manner. All actions are constrained within predefined safety
ranges to avoid abrupt or excessive changes.

Reward Function Formulation
The reward function is designed to reflect clinically meaningful
behavioral changes rather than to directly optimize long-term
clinical outcomes. At each decision point t, the reward rt is
computed as a weighted composite function:

where At represents short-term adherence to prescribed training
tasks, Ct reflects task completion and user engagement, Δt

captures the magnitude of abrupt behavioral changes between
consecutive recommendations, and Pt denotes penalty terms
applied when predefined safety thresholds are approached (eg,
overly frequent voiding prompts or rapid escalation of training
schedules). All components are normalized to bounded ranges
prior to aggregation to ensure numerical stability and
interpretability.

In practical clinical terms, this formulation supports gradual
and responsive rehabilitation adjustments. For instance, when
a patient reports an increase in urinary leakage episodes, the
system may recommend extending PFMT duration by 15
minutes, representing a moderate increase in task demand. If
the patient demonstrates high adherence and engagement
following this adjustment and a subsequent reduction in leakage
frequency is observed, penalty terms decrease and the revised
training plan is maintained. Conversely, if task completion or
engagement declines and leakage frequency fails to improve,
penalty values increase, indicating that the adjustment may be

poorly tolerated. In such cases, the system may revise the
recommendation by reducing the training extension (eg, to an
additional 5 minutes) and continue monitoring adherence,
engagement, and leakage trends before further modification.
This iterative process mirrors routine clinical reasoning,
emphasizing tolerability, patient response, and safety rather
than rigid optimization.

Q Value Estimation and Policy Learning
Based on the defined reward, action values are estimated using
standard Q-learning principles. The Q value represents the
expected cumulative future reward of selecting action at under
state      and is updated offline according to:

where α is the learning rate and γ is the discount factor. Q values
are learned entirely from historical behavioral data using offline
batch updates, without real-time exploration in patients.

Conceptually, Q values estimate how beneficial a specific
behavioral adjustment is expected to be over time. Actions
associated with higher Q values are more likely to be
recommended, as they have historically led to stable adherence
and acceptable behavioral patterns.

To handle variability in patient engagement and avoid
overreliance on historical patterns, an ε-greedy action selection
strategy is used. In most situations, the system selects the action
with the highest estimated Q value; however, with a small
probability ε, alternative actions are explored. In simple terms,
the model usually follows what has worked best before, but
occasionally tests other reasonable options to prevent overly
rigid behavior, particularly for patients with inconsistent
adherence.

System Usability and Technical Validation
Usability testing was conducted with a pilot group of 30 patients
drawn from the database construction cohort, recruited from
September to November 2023, who participated in a 4-week
trial from December 2023 to January 2024. Task completion
rates, interaction time, feedback scores, and daily user feedback
during usage were systematically recorded. The mean training
plan navigation time was 56 seconds (SD 12 seconds), with a
>92% completion rate of daily bladder diaries. The CBISs
demonstrated full functional compatibility with both Android
(v8.0+) and iOS (v13+) platforms. Backend performance stress
testing indicated stable response under 1000 concurrent users
with <500 ms latency. The final release version underwent
security penetration testing to ensure robustness against common
cybersecurity threats, such as injection attacks, data breaches,
and unauthorized data access attempts.

Integration of Human–Artificial Intelligence Shared
Decision-Making
To reinforce clinical safety and ensure alignment with real-world
care standards, a “human–artificial intelligence (AI) shared
decision-making” mechanism is integrated into the CBISs. This
module operates as a safety net for low-confidence or
guideline-sensitive scenarios, complementing the core RL
model.
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Specifically, when the model generates a recommendation with
low predictive certainty or when the patient presents high
behavioral variability or complex comorbidities, the CBISs
triggers clinician review. Health care professionals evaluate the
suggestion in a semiautomated interface, which also displays
relevant confidence scores and patient history snapshots.

In addition, a rule-based expert constraint layer is provided,
allowing clinicians to embed patient-specific limitations such
as contraindications, comorbidity exclusions, or institutional
guidelines (eg, American Urological Association 2024 and
International Continence Society). All final behavior plans are
generated through an iterative approval flow that synthesizes
algorithmic output, patient feedback, and clinician judgment.

This human–AI collaboration mechanism improves
accountability, enhances clinical trustworthiness, and ensures
DTx remain aligned with evidence-based care pathways.

Pilot Test of Clinical Behavioral
Intervention-Supporting System
This pilot study was designed as an exploratory, single-arm,
self-controlled evaluation to assess feasibility, adherence, and
outcome trends rather than to establish definitive clinical
efficacy. A separate cohort of 16 patients with PPI was recruited,
distinct from the 150 participants was enrolled in the database
construction phase. Participant recruitment and CBISs
implementation occurred between January 2024 to March 2024.
Participants eligibility criteria were consistent with the formal
research protocol. Patient age and time since surgery were
recorded. Voiding characteristics, including timing, intervals,
and nocturia episodes (both frequency and total volume) were
systematically collected. Patient compliance was evaluated
based on completion of prescribed CBISs diary entries, with
actual usage frequency tracked as the adherence metric. All
participants were enrolled to use only the CBISs for
postoperative rehabilitation for 3 months.

Both baseline data collection and postintervention outcome
assessment were conducted over 5-day periods, with the mean
values of these 5-day measurements used as pre- and
postintervention results for comparison. The following
parameters were recorded: daily voided volume (mL), daily
fluid intake (mL), daytime urinary frequency, nighttime urinary
frequency, incontinence episodes, urine leakage measured by
the 1-hour pad test (g), total score of the ICIQ-UI SF (range
0-21), daily occurrence of urinary urgency, sensation of
incomplete bladder emptying, postvoid dribbling, and dysuria
(recorded as present or absent).

For each participant, the mean preintervention value was
calculated as the arithmetic average of the baseline observations
(the first 5 days of recording), yielding the preintervention daily
average. The mean postintervention value was derived similarly
from the final 5 days of recording. For symptom data recorded
as binary outcomes (present=1, absent=0), symptom frequencies
were calculated as continuous variables. Preintervention
symptom frequency was defined as (number of days the
symptom was present during the 5-day baseline period) / 5 ×
100%. Postintervention symptom frequency was defined as
(number of days the symptom was present during the final 5-day

intervention period) / 5 × 100%. For all measured parameters,
the change score (Δ) for each participant was computed as: Δ
= postintervention value – preintervention value.

All statistical analyses were conducted using R software (version
4.4.2; R Foundation for Statistical Computing). Given the
exploratory nature of this pilot study, analyses were performed
to describe within-participant change patterns and estimate
effect magnitude rather than to test confirmatory hypotheses.
A 2-tailed α level of .05 was adopted for descriptive purposes
only.

The distribution of individual change scores (Δ) was assessed
using the Shapiro-Wilk test. Paired-sample 2-tailed t tests or
Wilcoxon signed-rank tests were applied as appropriate based
on distributional assumptions. Binary symptom variables were
converted to symptom frequency percentages and analyzed as
continuous outcomes when normality assumptions were met.

Spearman rank correlation coefficient was used to explore
associations between changes in selected outcomes. No
adjustment for multiple comparisons was performed due to the
pilot design and limited sample size, and statistical findings
should be interpreted cautiously.

Ethical Considerations
Ethical approval for data collection required for system
construction was obtained from the Medical Ethics Committee
of Sun Yat-sen Memorial Hospital, Sun Yat-sen University
(approval number: SYSKY-2023-925-01). All participants
provided electronic informed consent approved by the Medical
Ethics Committee (SYSKY-2023-925-01), explicitly detailing
(1) bladder diary and behavioral data collection for RL model
training to generate personalized recommendations, (2)
anonymized data use for system-wide model improvement, (3)
right to withdraw data or consent at any time without impact
on care, (4) potential implications of AI-driven personalization
(eg, adaptive vs static guidance). Consent forms used plain
language with examples and were available in Chinese and
English.

To mitigate bias from incomplete or anomalous data,
preprocessing excluded records with <80% diary completion
or >20% anomalies (IQR filtering and time-series checks).
Stratified sampling (70/15/15 train/validation/test) preserved
leakage severity and adherence distributions. Model fairness
was monitored through subgroup performance (age and time
since surgery) during 5-fold cross-validation, with clinician
override for low-confidence predictions ensuring equity.

For data security, uploaded records were protected using
ShangMi 3 (SM3; a cryptographic hash algorithm for integrity
verification) and ShangMi 4 (SM4; a symmetric block
encryption algorithm for secure data storage and transmission),
in accordance with national cryptographic standards. Data
handling adhered to China’s Personal Information Protection
Law and the General Data Protection Regulation–equivalent
standards for health data. Health care professionals accessed
aggregated views through the CBISs using an authorization key.
Additionally, patient-side interfaces integrated real-time alerts
for suspicious login attempts or data anomalies, ensuring prompt
intervention and maintaining data integrity and patient privacy.
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Results

Demographic and Disease-Related Characteristics of
Participants
In the first phase of this study, a total of 150 participants were
included who provided data for system development, model
construction, and demographic characterization. From this
cohort, a subset of 30 additional participants was selected to
participate in the focused usability testing phase of CBISs.

The full modeling cohort (N=150) had an age range of 43-82
years, with a mean age of 54.32 (SD 7.51) years. Participants
included in the usability testing subsample (n=30) showed a
comparable age distribution, ranging from 43-81 (mean 53.70,
SD 7.30) years.

Regarding educational attainment, the modeling cohort was
predominantly composed of 46 (30.67%) individuals with junior
high school education, followed by 35 (23.33%) participants
with vocational school education, 28 (18.67%) individuals with
undergraduate education, 22 (14.67%) with senior high school
education, 12 (8.00%) with primary school education, 6 (4.00%)
with postgraduate education, and 1 (0.67%) with no formal
education.

In the usability testing subsample, junior high school education
was the most prevalent, reported by 13 (43.33%) participants,
followed by junior college education with 6 (20%) participants.
Senior high school and primary school education were each
represented by 4 (13.33%) participants, while vocational school
education accounted for 2 (6.67%) participants, and
undergraduate education for 1 (3.33%) participants. No

participants reported postgraduate education or no formal
schooling.

With respect to physical characteristics, the mean BMI of the

modeling cohort was 23.44 (SD 3.11) kg/m2. The usability
testing subsample demonstrated a similar BMI distribution, with

a mean value of 24.01 (SD 3.18) kg/m2. Overall, participants
included in the usability testing phase were broadly comparable
to the full modeling cohort in terms of age and BMI, while
exhibiting modest differences in educational composition.

In the pilot test of CBISs, participants used the CBISs an average
of 5.2 (SD 1.1) times per day. A total of 11 (68.75%)
participants met or exceeded the preset usage target, while 5
(31.25%) participants fell below the target, with a minimum
usage of 3 times per day. This indicates generally high
engagement with the system during the intervention period. All
participants, being older adults, ranged in age from 61-74 years
and had a mean age of 67.6 (SD 4.3) years. Among them, 11
(68.75%) participants were within 1-3 months after PCa surgery,
and 5 (31.25%) participants were within 3-6 months
postoperatively.

The Model of Clinical Behavioral
Intervention-Supporting System: Feature Engineering
Based on the patient bladder diary and behavioral monitoring
data, a total of 29 features in 6 categories were constructed in
this study (Table 1), with the feature construction methods
detailed in Table 2. Following data cleaning, the dataset was
partitioned via stratified sampling. Model construction was
performed based on XGBoost, incorporating Bayesian
optimization for model and parameter tuning.
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Table 1. Patient data collection form for clinical behavioral intervention-supporting system (CIBSs).

InstructionData category

Basic information

Discrete variables (male/female)Gender

Continuous variable (years)Age

Continuous variable (kg/m2); associated with symptom typing, behavioral
competence, and training intensity appropriateness

BMI

Continuous variable; determines symptom chronicityTime of onset

Continuous variable; identifies storage, voiding disorders, or bladder hypo-
compliance, etc

Urinary flow rate parameter (Qmax)

Continuous variableUrinary flow rate parameter (Qave)

Continuous variableResidual urine volume test records

Urinary behavior

Continuous variable (min); establishment of a 24-hour urinary rhythmTime of urination

Continuous variable (mL); partially collected automatically by portable urine
flow rate instrumentation

Urinary output

Continuous variable (mL/min); automatically collected by portable urinary
flow rate instruments

Urinary flow rate

Continuous variable (min); imputed from voiding time differenceUrination interval

Continuous variable (times/mL); includes nocturnal urine frequency and volumeNocturnal urination

Continuous variable (grade); graded 0-5, subjectively scored by the patientUrinary urgency event

Discrete variables, for example, presence of “urine odor,” “slow urine flow,”
“painful urination,” “burning sensation,” “divergent urinary stream,” “feeling
of not emptying,” “dribbling after urination,” and so on

Symptoms associated with urination

Drinking behavior

Continuous variable (specific time); establish temporal linkage with urination
time

Drinking time

Continuous variable (mL)Drinking volume

Discrete type variable, for example, water, tea, coffee, functional drinks, etcDrinking type

Daily activity and sleep behavior

Continuous variable (steps/kcal); from wearable device or mobile health appActivity intensity (steps and body movement)

Discrete variable (daytime/nighttime);Activity period

Continuous variable (min/times); basis for determining the rhythm between
nocturia and nighttime arousal

Sleeping time/number of night arousals

Specialty scales and subjective scoring data

Continuous variable; quantitative grading of symptoms to identify overactive
bladder

Overactive Bladder Syndrome Score

Continuous variable; determination of symptom severity during storage/voiding
phase

International Prostate Symptom Score

Continuous variable; incontinence symptoms and quality of life implicationsInternational Consultative Committee on Incontinence Question-
naire Short Form

Continuous variable; assess anxiety and depressive statesSelf-assessment Scale for Anxiety and Depression

Continuous variable; determine the extent to which nocturia affects sleepPittsburgh Sleep Quality Index–Sleep Quality Score

System interaction and training feedback data

Whether bladder training, water intake program, relaxation training, pelvic
floor muscle training, etc, are completed as planned

Record of training completion

Daily record of perceived efficacy, difficulty, and compliance Patient feedback score

Such as symptom exacerbation or incomplete training prompts Abnormal events
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InstructionData category

Judge adherence and compliance levelFrequency of use, number of times of punching clock

Table 2. Feature engineering methodology for clinical behavioral intervention-supporting system (CIBSs).

Clinical significanceConstruction methodSource data itemsFeature category and name

Temporal featuresa

Evaluates bladder storage sta-
bility

Mean time difference between
voids during 9 AM to 9 PM

Urination time, day/night encodingDaytime mean voiding interval

Core diagnostic indicator for
nocturnal polyuria

∑ (nocturnal urine volume) /
∑ (24-hour urine volume) ×
100%

Nocturnal urine volume, 24-hour
total volume

Nocturnal polyuria ratio

Quantifies overactive bladder
severity

Voids with urgency (7 days)
/ total voids (7 days)

Urgency event markersUrgency event frequency

Ratio featuresb

Differentiates pure nocturia
from sleep disorders

(Voided volume) / (voided
volume + postvoid residual)
× 100%

Nocturnal voids, sleep interrup-
tions

Nocturia-arousal association index

Reflects bladder emptying ef-
ficiency

Nocturia episodes / sleep inter-
ruptions

Voided volume, postvoid residualEffective voiding rate

Assesses bladder irritant expo-
sure

Coffee + tea intake (mL) / to-
tal intake (mL) × 100%

Fluid type, intake volumeIrritant beverage intake ratio

Time-period featuresc

Detects stress-related voiding
behavior changes

Mean weekend voiding inter-
val − mean workday voiding
interval

Voiding time, date typeWorkday-weekend voiding pattern difference

Identifies exercise-induced
urgency

Binary indicator: urgency
within 30 minutes after vigor-
ous exercise

Activity period, urgency markersPostexercise urgency marker

Contextual featuresd

Evaluates bladder hypersensi-
tivity

Voids within 60 minutes post
intake / total voids

Intake time, voiding timeFluid-void temporal association index

Quantifies decline in behav-
ioral intervention compliance

Adherence rate (last 3 days) /
adherence rate (week 1)

Exercise logs, timePFMTe adherence decay rate

aBased on mean, extreme, and periodic variations within a fixed time window.
bUsed for reflecting structural relationships.
cUsed for behavioral pattern recognition.
dDescribes behavioral markers triggered by specific conditions.
ePFMT: pelvic floor muscle training.

Model Training and Validation
The preconstructed database was used to support feature
matching and behavioral pattern recognition, which informed
the generation of personalized training recommendations. The
RL component subsequently updated these recommendations
over time based on patient interaction and behavioral feedback,
completing the adaptive model construction process (Figure 1).

In the current implementation, the RL framework did not
incorporate explicit clinical outcome measures (eg, reduction
in leakage episodes or symptom score improvement) as direct
reward signals. Instead, reward signals were defined using
conservative, behavior-centered proxy indicators, including task
completion, adherence stability over time, and avoidance of

abrupt behavioral changes potentially associated with symptom
aggravation. This design choice was intentionally adopted to
ensure clinical safety and model stability in this exploratory
pilot setting, where outcome responses are delayed,
heterogeneous, and not suitable for short-horizon optimization.

Clinical outcome measures were therefore reserved exclusively
for post hoc exploratory evaluation rather than real-time reward
optimization. Model evaluation metrics (eg, AUC, F1-score,
and MAE) were used internally during development and tuning
to support system calibration but were not reported as final
performance outcomes, as this study was not designed as a
standalone predictive model validation.
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Rather than optimizing a single mathematically fixed reward
function, the RL component operated within a
clinician-supervised decision-support framework, integrating
multiple behavior-related feedback signals under predefined

safety constraints. Accordingly, the RL module was designed
to support adaptive behavioral guidance within a clinically
supervised system rather than to function as an autonomous
predictive model intended for direct performance benchmarking.

Figure 1. Patient flow diagram for clinical behavioral intervention-supporting system (CBISs) development and pilot feasibility evaluation. PPI:
postprostatectomy incontinence; RARP: robot-assisted radical prostatectomy.

The Clinical Behavioral Intervention-Supporting
System Mobile App

Overview
Based on the literature review and research team meetings, the
main functional modules of the CBISs were identified (Figure
1). The CBISs provide patients with personalized voiding
schedules, dietary and fluid intake plans, and pelvic floor muscle
contraction training to enhance bladder function. A distinctive
feature of the CBISs is its consideration of skin-related
symptoms potentially caused by incontinence, offering patients
guidance on incontinence-related nursing interventions, that is,

the incontinence skin care function. Based on their evaluation
of perineal skin condition and severity, the CBISs recommends
tasks such as daily cleansing, application of skin-protective
dressings, and use of incontinence products. The health care
team and administrator portals also receive early warning
notifications regarding the occurrence of incontinence dermatitis
in patients.

Key Features and Capabilities
The functional sections of the app and its user interface were
identified. The app has 2 interfaces: the home page and the
personal center. The home page is divided into 4 sections:
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“Training Sections,” “Bladder Diary,” “Assessment Tools,”
and “Incontinence Care.” The “Personal Center” page provides
the user’s basic information, contact options for doctors or
nurses, and counseling services (Figure 2). Users are required
to register an account upon first login and can access the app
after using their account number and password. Patients can
access the training program after registering their behavioral
logs for 3 days.

In the training section, the app provides training programs based
on the aforementioned RL models. The initial training program

is based on the raw data provided by the patient, and the training
content specifically includes voiding interval time, drinking
time schedules, rising urine training (bladder capacity training),
and pelvic floor muscle contraction and relaxation training.
Patient’s data are regularly evaluated to assess rehabilitation
progress and adjust the training program accordingly. The
learning model iteratively adjusts the program, while the health
care team may also adjust the program manually. The “Contact
Doctor/Nurse” module offers patients support and training
guidance throughout the course of their illness to ensure that
they maintain good habits after discharge (Figure 3).

Figure 2. Key functional modules of clinical behavioral intervention-supporting system (CBISs).
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Figure 3. Clinical behavioral intervention-supporting system (CBISs) user interface. (A) Initial app screen—outpatient; (B) initial app screen—inpatient
(patient clinical and demographic characteristics); (C) personal homepage (top to bottom: patient overview—Illness severity, demographics, disease
details, and responsible medical personnel; records and support—health and user records, alongside user assistance; rehabilitation log—tracks rehabilitation
activities and outcomes; service purchase—handles the acquisition of additional services); (D) bladder ultrasound monitoring; (E) urinary pad test; and
(F) questionnaire entry screen.

Safety and Feasibility
Regarding digital confidentiality, patients upload data by
completing their own records as well as using wearable devices.
Because the data are time series in nature, the app assigns
timestamps to each data point and incorporates preprocessing

interfaces to filter missing values and outliers. The study follows
SM3 and SM4 encryption algorithms for desensitized and
encrypted storage of data, alongside hierarchical management
of data permissions, facilitating separate review processes for
health care professionals and patients. Data privacy complies
with the Personal Information Protection Act.
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Pilot Evaluation of Clinical Behavioral
Intervention-Supporting System Feasibility and
Outcome Trends
Participants used the CBISs an average of 5.2 (SD 1.1) times
per day. Following implementation of the CBISs-guided bladder
function training program, directional changes were observed
across multiple bladder diary parameters, incontinence-related
outcomes, and patient-reported symptom measures (Tables 3
and 4). Given the exploratory nature of this pilot study and the
limited sample size, results are presented to describe change
patterns rather than to support confirmatory inference.

Mean voided volume increased from 984.6 (SD 132.7) mL at
baseline to 1128.4 (SD 148.2) mL post intervention. Fluid intake
also increased over the intervention period, suggesting changes
in hydration and voiding behaviors consistent with the
individualized training guidance delivered by the system.

Daytime urinary frequency showed a reduction from 5.74 (SD
1.21) episodes per day to 4.69 (SD 1.08) episodes per day.
Nighttime urinary frequency similarly declined, with median
values decreasing from 1.8 (IQR 1.6-2.2) episodes per night to
1.0 (IQR 1.0-1.6) episodes per night. Total urinary frequency
demonstrated a comparable downward trend over the
intervention period, reflecting changes in urinary storage and
voiding patterns.

Incontinence episodes declined from a median of 7.0 (IQR
6.0-11.0) episodes per day at baseline to 4.0 (IQR 2.0-6.0)
episodes per day after the intervention. Pad test measurements
indicated lower postintervention urine leakage values compared
with baseline, with a shift toward milder leakage severity
categories observed among participants. Specifically, the number

of patients classified as having severe or greater leakage
decreased, while the number of patients classified as having
mild leakage increased.

Patient-reported outcomes showed parallel trends. ICIQ-UI SF
scores were lower after the intervention compared with baseline,
indicating a reduction in perceived symptom burden.
Exploratory correlation analysis suggested alignment between
changes in patient-reported symptom scores and reductions in
objective urine leakage measures; however, these associations
should be interpreted cautiously given the small sample size
and exploratory design.

The proportion of patients reporting urinary urgency and
sensation of incomplete bladder emptying was lower following
the intervention period. Dysuria incidence also declined, whereas
changes in postvoid dribbling were less pronounced and more
variable across individuals.

Effect size estimates were calculated to describe the magnitude
of observed changes across outcomes. Several parameters
demonstrated moderate to large effect size values; however,
these estimates are provided for descriptive and
hypothesis-generating purposes only and should not be
interpreted as evidence of definitive clinical benefit in the
absence of a concurrent control group.

Overall, the pilot results indicate that the CBISs can be feasibly
implemented in postprostatectomy patients and is associated
with consistent directional changes across multiple objective
and subjective outcome domains. No causal conclusions
regarding clinical efficacy can be drawn from this exploratory
analysis.

Table 3. Exploratory changes in bladder diary parameters before and after the clinical behavioral intervention-supporting system (CBISs)–guided
training program. Statistical comparisons are exploratory and intended to describe within-participant change patterns rather than to support confirmatory
inference. Effect sizes are reported for descriptive purposes only.

Cohen dP value2-tailed t test
(df)

Mean difference, 95% CIPostintervention, mean
(SD)

Preintervention, mean
(SD)

Variable

1.08<.0014.32 (15)143.8 (69.2 to 218.4)1128.4 (148.2)984.6 (132.7)Voided volume (mL)

1.28<.0015.12 (15)181.4 (95.6 to 267.2)1428.2 (198.6)1246.8 (181.4)Fluid intake (mL)

0.89.003–3.56 (15)–1.05 (–1.68 to –0.42)4.69 (1.08)5.74 (1.21)Daytime urinary fre-
quency

1.53<.001–6.12 (15)–1.90 (–2.56 to –1.24)5.96 (1.24)7.86 (1.90)Total urinary frequen-
cy

1.08<.001–8.23 (15)–37.5 (–47.5 to –27.5)31.3 (16.8)68.8 (18.2)Urinary urgency fre-
quency, %

1.28<.001–6.15 (15)–30.0 (–40.6 to –19.4)28.8 (15.6)58.8 (19.5)Incomplete emptying
sensation frequency,
%

0.890.139–1.56 (15)–6.2 (–14.8 to 2.4)18.8 (12.4)25.0 (15.8)Postvoid dribbling
frequency, %
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Table 4. Exploratory changes in incontinence-related outcomes and patient-reported symptoms before and after the clinical behavioral
intervention-supporting system (CBISs)–guided training program. Statistical analyses were conducted to characterize the direction and magnitude of
changes in this pilot study. P values and effect sizes should be interpreted cautiously due to the small sample size and lack of a control group. For
dysuria, the value represents percentage change.

Effect sizea, rP valuez valueMedian differencePostintervention, median
(IQR)

Preintervention, median
(IQR)

Variable

0.68<.001–3.82–0.81.0 (1.0-1.6)1.8 (1.6-2.2)Nighttime urinary frequen-
cy, n

0.99<.001–5.56–3.04.0 (2.0-6.0)7.0 (6.0-11.0)Incontinence episodes, n

0.99<.001–5.56–5.03.5 (2.0-9.0)8.5 (4.0-19.0)Urine leakage, g

0.95<.001–5.32–5.09.0 (6.0-16.0)14.0 (12.0-20.0)ICIQ-UI SFb score

0.61.001–3.41–18.8*25.043.8Dysuria incidence, %

aEffect size interpretation: Cohen d: small (0.2), medium (0.5), large (0.8); r effect size: small (0.1), medium (0.3), large (0.5).
bICIQ-UI SF: International Consultation on Incontinence Questionnaire–Short Form.

Discussion

Overview
The pilot study provided preliminary evidence of improvements
in urinary control and patient-reported symptoms, with the
CBISs simulating professional supervision by dynamically
adjusting behavioral prescriptions based on adherence patterns,
symptom trajectories, and real-time data. Pilot results indicated
enhanced urinary control and improved subjective symptom
experiences among patients with PPI.

PPI etiology remains incompletely understood, with risk factors
including age, BMI, prostate size, oncologic and surgical factors,
and shorter membranous urethral length [20-23]. Despite refined
surgical techniques and preoperative precautions, PPI persists,
severely impacting QoL, finances, and psychology. Conservative
treatment—lifestyle modifications, bladder diaries, and
PFMT—is first-line for mild PPI, yet a significant
implementation gap exists due to poor adherence influenced by
fatigue, transportation, time constraints [24-27], inadequate
PFMT technique comprehension, and lower cognitive ability
[28]. Supervised rehabilitation outperforms unsupervised
approaches [29,30].

Traditional in-person care faces geographical, resource, and
adherence limitations. Digital health interventions extend
support beyond clinics [31]. This study developed CBISs, which
collects multidimensional data (diet, urination, activities,
adherence, and perceived severity) to generate individualized
RL-driven recommendations through XGBoost with rule-engine
integration, continuously optimizing through cross-validation
while preventing overfitting.

Several digital therapeutic approaches for PPI have been
reported, including cognitive-behavioral therapy–based
telehealth interventions for urinary incontinence control and
QoL [31,32], mobile health apps combining bladder diary
logging with PFMT prompts [33], perioperative telehealth
programs with remote monitoring calls [28], WeChat-based
health education and extended care services [34,35], social
media platforms for patient education and community support
[36], and proactive digital health interventions aimed at
symptom reduction [37]. These platforms primarily focus on

delivering educational content, standardized exercise
instructions, symptom tracking, and periodic feedback through
telehealth communication, messaging apps, or social media
engagement. While such approaches improve accessibility and
patient awareness, their rehabilitation protocols are generally
static, relying on rule-based prompts, fixed schedules, or
clinician-mediated adjustments. Consequently, they have limited
capacity to adapt training intensity, content, or timing in
response to individual patient trajectories, fluctuating adherence,
or delayed and heterogeneous treatment responses.

In contrast, the CBISs introduces an RL–driven, closed-loop
behavioral intervention framework that emphasizes continuous
personalization rather than predefined content delivery,
consistent with recent applications of RL in noncommunicable
disease management and personalized medicine [38,39]. By
iteratively integrating multidimensional patient data—including
voiding behaviors, fluid intake patterns, and training
adherence—the CBISs dynamically adjusts rehabilitation
guidance in response to individual progress and engagement
over time. This adaptive design is particularly suited to
behavioral rehabilitation contexts, where patient responses
evolve gradually and vary substantially across individuals,
representing a key limitation of conventional static or rule-based
digital platforms.

From a usability and scalability perspective, the CBISs is
designed to translate complex behavioral information into
actionable, individualized recommendations while reducing
reliance on continuous clinician involvement. Clinicians
primarily function as supervisors supported by automated
monitoring and alert mechanisms, which may help mitigate
workforce constraints in real-world clinical settings. Although
this pilot study was not designed to establish definitive efficacy,
the observed favorable trends in urinary symptom–related
outcomes suggest that RL-driven adaptability may help address
common challenges of existing digital rehabilitation approaches,
including declining adherence and variable response patterns.

Collectively, these features distinguish the CBISs from existing
digital therapeutic platforms by shifting the focus from
content-centered delivery to behavior-centered, data-driven
optimization. This paradigm more closely reflects the dynamic
nature of rehabilitation processes and provides a plausible
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pathway for improving long-term engagement and
personalization in PPI management.

Several limitations warrant consideration. First, transparency
and interpretability remain inherent challenges of machine
learning–based systems. Although clinician oversight was
incorporated into the CBISs workflow, the “black box” nature
of RL algorithms necessitates ongoing monitoring to ensure the
clinical appropriateness and reliability of generated
recommendations. For example, the model may recommend
aggressive voiding interval reductions (±15 min) for patients
with irregular adherence decay without clearly explaining feature
interactions (eg, fluid intake influencing urgency events). In
pilot testing, 3 of 16 (18.8%) cases triggered low-confidence
alerts routed to clinician override due to unexplained Q value
shifts during nocturia spikes, highlighting the need for
explainable AI techniques like Shapley additive explanations
analysis in future iterations. CBISs relies on patient-reported
bladder diaries and potential wearable integration, introducing
variability from self-reporting inaccuracies (eg, underreported
leakage) or device nonuse (12% dropout in usability testing).
Participation may have induced Hawthorne effects, with
improvements potentially attributable to heightened attention
from research involvement rather than CBISs alone.
Additionally, while pilot (n=16) and modeling (n=150) cohorts
shared consistent inclusion and exclusion criteria, all participants
were motivated outpatients from routine clinical settings,
potentially overrepresenting compliant, tech-savvy patients and
limiting generalizability to broader PPI populations with lower
motivation or compliance challenges. In addition, the system
processes large volumes of sensitive patient-level data,
underscoring the importance of robust data security, privacy
protection, and governance mechanisms for real-world
implementation.

The pilot evaluation used a prospective self-controlled pre-post
design, which is appropriate for early-stage investigation of
interventions requiring high patient engagement and ethical
sensitivity. By using patients as their own controls, this design
reduced interindividual variability and improved statistical
efficiency under small-sample conditions, supporting
preliminary exploration of feasibility and potential effect sizes.
The concurrent use of objective measures (pad test) and
validated patient-reported outcomes (ICIQ-UI SF) further
strengthened result interpretation.

Nevertheless, the absence of a concurrent control group limits
causal inference, and the observed changes may be partially
attributable to nonspecific factors such as time effects, repeated
measurement, or expectancy-related bias. The relatively short
follow-up period also precludes assessment of long-term
effectiveness, sustainability of behavioral change, and delayed
adverse effects.

Future studies incorporating appropriate control groups, blinded
outcome assessment, and extended follow-up are warranted to
establish the definitive clinical value of this intervention. In
addition, future work will explore the integration of validated
and delayed clinical outcome signals into the RL framework
once sufficient longitudinal and controlled trial data become
available.

Future studies with complete longitudinal labeling and
independent test cohorts will enable formal reporting of model
performance metrics such as AUC, F1-score, and MAE. The
lack of a fully formalized mathematical reward function reflects
an intentional design choice in this exploratory phase and will
be addressed in future work when sufficient validated outcome
data become available. Comparative evaluation against simpler
baseline models was beyond the scope of this feasibility-focused
study and will be addressed in future controlled investigations.

Conclusions
This study describes the development and preliminary evaluation
of a behavioral therapy–based CBISs designed to support
personalized rehabilitation for PPI. By integrating
multidimensional patient data—including voiding behaviors,
fluid intake patterns, PFMT adherence, and patient-reported
outcomes—the CBISs applies an RL framework to deliver
adaptive, individualized behavioral guidance beyond static
information delivery.

Rather than replacing clinician decision-making, the CBISs
functions as a digital extension of guideline-based care, with
the potential to enhance continuity, personalization, and
accessibility of rehabilitation support outside traditional clinical
settings. The findings from this early-stage study suggest
feasibility and favorable trends, supporting further investigation
of this approach.

Future multicenter randomized controlled trials are warranted
to address several key research questions including whether (1)
RL-driven personalization improves continence recovery, QoL,
and adherence compared with standard or nonpersonalized
digital rehabilitation; (2) observed benefits are sustained over
longer follow-up periods; (3) the system performs across diverse
patient populations, clinical environments, and levels of baseline
motivation; and (4) adaptive, closed-loop interventions confer
incremental value over conventional rule-based digital platforms.
Addressing these questions will be essential for defining the
clinical effectiveness, generalizability, and implementation
potential of the CBISs.

As DTx continue to evolve, systems such as the CBISs may
offer a scalable pathway toward precision rehabilitation,
supporting individualized recovery trajectories for patients
navigating functional challenges following prostate cancer
surgery.
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