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Abstract

Background: Metastatic cancer remains one of the leading causes of cancer-related mortality worldwide. Yet, the prediction
of survivability in this population remains limited by heterogeneous clinical presentations and high-dimensional molecular
features. Advances in machine learning (ML) provide an opportunity to integrate diverse patient- and tumor-level factors into
explainable predictive ML models. Leveraging large real-world datasets and modern ML techniques can enable improved risk
stratification and precision oncology.

Objective: This study aimed to develop and interpret ML models for predicting overall survival in patients with metastatic
cancer using the Memorial Sloan Kettering-Metastatic (MSK-MET) dataset and to identify key prognostic biomarkers through
explainable artificial intelligence techniques.

Methods: We performed a retrospective analysis of the MSK-MET cohort, comprising 25,775 patients across 27 tumor types.
After data cleaning and balancing, 20,338 patients were included. Overall survival was defined as deceased versus living at last
follow-up. Five classifiers (extreme gradient boosting [XGBoost], logistic regression, random forest, decision tree, and naive
Bayes) were trained using an 80/20 stratified split and optimized via grid search with 5-fold cross-validation. Model performance
was assessed using accuracy, area under the curve (AUC), precision, recall, and F1-score. Model explainability was achieved
using Shapley additive explanations (SHAP). Survival analyses included Kaplan-Meier estimates, Cox proportional hazards
models, and an XGBoost-Cox model for time-to-event prediction. The positive predictive value and negative predictive value
were calculated at the Youden index–optimal threshold.

Results: XGBoost achieved the highest performance (accuracy=0.74; AUC=0.82), outperforming other classifiers. In survival
analyses, the XGBoost-Cox model with a concordance index (C-index) of 0.70 exceeded the traditional Cox model (C-index=0.66).
SHAP analysis and Cox models consistently identified metastatic site count, tumor mutational burden, fraction of genome altered,
and the presence of distant liver and bone metastases as among the strongest prognostic factors, a pattern that held at both the
pan-cancer level and recurrently across cancer-specific models. At the cancer-specific level, performance varied; prostate cancer
achieved the highest predictive accuracy (AUC=0.88), while pancreatic cancer was notably more challenging (AUC=0.68).
Kaplan-Meier analyses demonstrated marked survival separation between patients with and without metastases (80-month survival:
approximately 0.80 vs 0.30). At the Youden-optimal threshold, positive predictive value and negative predictive value were
approximately 70% and 80%, respectively, supporting clinical use for risk stratification.

Conclusions: Explainable ML models, particularly XGBoost combined with SHAP, can strongly predict survivability in
metastatic cancers while highlighting clinically meaningful features. These findings support the use of ML-based tools for patient
counseling, treatment planning, and integration into precision oncology workflows. Future work should include external validation
on independent cohorts, integration with electronic health records via Fast Healthcare Interoperability Resources–based dashboards,
and prospective clinician-in-the-loop evaluation to assess real-world use.
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Introduction

Cancer remains one of the foremost global health challenges,
with 611,720 deaths projected in the United States alone for
2024, and metastatic disease accounting for the overwhelming
majority of these fatalities [1]. Metastasis is particularly vexing
because disseminated tumor cells frequently acquire distinct
genomic and phenotypic profiles that render them resistant to
standard therapies. Contemporary oncology research, therefore,
acknowledges intra- and intertumor heterogeneity as
fundamental obstacles to curative treatment, therapeutic
resistance, and accurate prognosis [2,3]. Reliable, early-stage
prediction of patient survivability is pivotal not merely for
counseling patients but also for tailoring aggressive
interventions, prioritizing scarce health care resources, and
designing adaptive clinical trials aimed at improving long-term
outcomes.

Historically, clinicians have relied on the tumor-node-metastasis
staging system, Kaplan-Meier life tables, and the Cox
proportional hazards (CPH) regression model to stratify survival
risk. Although statistically rigorous, these techniques impose
proportional hazards and linearity assumptions that rarely hold
across the dynamic, nonlinear biology of metastatic cancers.
When violated, CPH models can yield biased hazard ratios,
suffer from time-dependent covariate effects, and perform poorly
on censored or highly imbalanced datasets [4].

The emergence of artificial intelligence (AI) and machine
learning (ML) has enabled the development of sophisticated
models that can uncover previously hidden patterns in
heterogeneous clinical and multiomics datasets, thereby
providing new insights into cancer biology, diagnosis, prognosis,
and treatment outcomes. Over the past decade, ML models have
repeatedly outperformed traditional statistical approaches. A
deep-learning algorithm developed by Esteva et al [5] achieved
a sensitivity of 97% and a specificity of 78% in classifying skin
lesions as benign or malignant, while Liu et al [6] reported an
area under the receiver operating characteristic curve (AUROC)
of 0.94 for lung cancer risk prediction using computed
tomography images. Similar gains have been demonstrated for
breast cancer survival [7], lymph node metastasis [8], colorectal
and soft tissue sarcoma outcomes [9], lung cancer survival [10],
and prostate cancer prognosis [11,12].

Among contemporary ML pipelines, gradient-boosted decision
trees, particularly extreme gradient boosting (XGBoost) [13],
have emerged as a workhorse because they natively handle
missing data, nonlinear feature interactions, and mixed data
types. Recent examples include a non–small cell lung cancer
microwave-ablation study where XGBoost achieved an area
under the curve (AUC) of 0.89 [14]; a 2025 Scientific Reports
analysis integrating survival models for breast cancer recurrence
(concordance index [C-index]=0.82) [15]; a large colorectal
cancer cohort where boosted trees yielded the highest 5-year
survival accuracy [16]; and a thyroid cancer study that

constructed a 10-year overall survival nomogram using
Surveillance, Epidemiology, and End Results data [17].

Biomarkers are critical for early detection, diagnosis, prognosis,
and monitoring. Traditional biomarker-discovery approaches
often suffer from low sensitivity, limited reproducibility, and
dependence on prior biological hypotheses. ML circumvents
many of these limitations by integrating diverse data types and
identifying complex nonlinear relationships. Algorithms such
as random forests [18], support vector machines [19], and neural
networks [20] have successfully identified biomarkers from
gene expression [21-23], microRNA expression [24-27], DNA
methylation [28,29], and imaging modalities [30-33].

Despite this progress, significant gaps persist at the intersection
of scale, interpretability, and clinical use. First, while large
datasets like the Memorial Sloan Kettering-Metastatic
(MSK-MET) cohort [34] provide unprecedented scale, their
analysis has largely relied on traditional statistics, failing to
harness state-of-the-art ML for predictive modeling. Second,
most ML survival-prediction studies focus on single tumor
types, use modest sample sizes, or omit high-dimensional
genomic features, limiting their generalizability to the
pan-cancer reality of metastatic disease. Third, and most
critically, interpretability remains a bottleneck; oncologists are
understandably reluctant to incorporate opaque “black box” risk
scores into clinical workflows. Explainable AI methods like
Shapley additive explanations (SHAP) provide a mechanism
for transparency. For instance, SHAP has revealed previously
unknown drivers of prostate cancer mortality [35]. Although
explainable AI frameworks offer a solution, large-scale,
pan-cancer implementations that jointly optimize predictive
performance and model explainability remain scarce.
Consequently, the field lacks an interpretable, cross-tumor
framework capable of ranking metastasis-specific risk factors
at a scale that reflects real-world heterogeneity.

To address these critical gaps, we designed a methodological
framework that moves beyond standard, single-model
architectures. We leverage the MSK-MET dataset, a pan-cancer
cohort of genomic and clinical data from 25,775 patients
spanning 27 tumor types, as an ideal test bed for this purpose
due to its scale and diversity. Our approach is conceived as a
hierarchical and explainable pipeline specifically to tackle the
challenges of data heterogeneity, the need for clinical trust, and
biological discovery. It integrates rigorous pan-cancer
benchmarking with targeted, tumor-specific submodels and
crucially unifies ML classification with traditional survival
analysis. This ensures that the predictive performance of our
models is directly coupled with transparent, clinically actionable
insights.

Driven by this methodology, our work addresses persistent gaps
at the intersection of scale, interpretability, and clinical use in
metastatic cancer prognosis. Leveraging a large pan-cancer
cohort that captures real-world heterogeneity, we focus on
whether explainable ML approaches can yield clinically useful
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survivability predictions while providing transparent,
biologically and clinically coherent insights across tumor types.

The primary aim of this study is to develop and validate an
interpretable ML framework for predicting overall survival in
patients with metastatic cancer. We hypothesize that (1) ML
models will achieve clinically useful discrimination and
calibration for survivability prediction, (2) explainable AI
techniques will identify a core set of prognostic biomarkers that
are consistently important across diverse tumor types, and (3)
integrating ML predictions with established survival analysis
techniques will yield a transparent and clinically actionable tool
for risk stratification.

Methods

Overview
Figure 1 illustrates the steps followed to predict cancer
survivability using explainable AI. Raw data were used to
initially train the ML models, followed by SHAP analysis. Top
features identified by SHAP were then further used in the
survival analysis. The subsequent steps below detail how this
was implemented. All analysis and visualization were carried
out in Python (version 3.12; Python Software Foundation) with
relevant packages and libraries such as pandas, numpy,
scikit-learn, shap, etc.

Figure 1. Overview of the explainable machine learning (ML) pipeline for metastatic cancer survivability prediction. The Memorial Sloan
Kettering-Metastatic (MSK-MET) cohort is preprocessed and balanced, then split into stratified training and test sets before training and tuning 5
candidate classifiers (extreme gradient boosting [XGBoost], random forest, logistic regression, decision tree, and naive Bayes). The best-performing
XGBoost model is subsequently interrogated with Shapley additive explanations (SHAP) to identify key prognostic clinical and genomic features, which
are then carried forward into downstream survival analyses (Kaplan-Meier curves, Cox proportional hazards models, and XGBoost-Cox) to generate
time-to-event estimates and clinically interpretable risk stratification.

Data Preprocessing
We first performed a thorough exploratory data analysis on
MSK-MET that contained information from 25,775 patients
with cancer. Our exploratory data analysis process began with
a comprehensive analysis of the dataset, including the
distribution of different cancer types, stages, and other relevant
features. This helped us gain a deeper understanding of the
underlying patterns and structures, which informed subsequent
preprocessing steps. We preprocessed the input dataset and
dropped columns (such as patient ID) and rows having large
proportions of missing data. The target variable had 2 classes,
that is, living (positive class, coded as 1) and deceased (negative

class, coded as 0). In the final stage of preprocessing, the data
were balanced using the target classes. Using resampling, we
down-sampled the minority class (0). The final set contained
20,338 patients (10,169 living and 10,169 deceased) with 39
variables for each patient. In total, there were 27 cancer types
(Table 1). The overall survival status was the target variable for
prediction. Categorical variables were encoded using label
encoding, and features were scaled using minimum-maximum
scaling to ensure that variables with larger magnitudes did not
unduly influence model outcomes. The resulting preprocessed
data were then split into training and testing sets for further
analysis.
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Table 1. Distribution of primary cancer types in the Memorial Sloan Kettering-Metastatic cohort. Frequency counts are reported for all cancer types
represented in the dataset; the 5 largest groups (non–small cell lung, colorectal, breast, pancreatic, and prostate cancer) provided the primary strata for
cancer-specific extreme gradient boosting models and downstream survival analyses.

Frequency count, nCancer type

3790Non–small cell lung cancer

2696Colorectal cancer

2043Breast cancer

1738Pancreatic cancer

1596Prostate cancer

988Endometrial cancer

923Ovarian cancer

882Melanoma

870Bladder cancer

790Hepatobiliary cancer

738Esophagogastric cancer

420Soft tissue sarcoma

362Head and neck cancer

319Thyroid cancer

318Renal cell carcinoma

286Gastrointestinal stromal tumor

277Small cell lung cancer

241Germ cell tumor

219Mesothelioma

160Appendiceal cancer

133Uterine sarcoma

123Salivary gland cancer

115Gastrointestinal neuroendocrine tumor

87Skin cancer (nonmelanoma)

80Cervical cancer

76Small bowel cancer

68Anal cancer

Stratified Random Sampling of Training and Testing
Sets
We used a stratified random sampling approach to create the
training and test sets. First, we randomized the complete dataset
to eliminate any inherent order or sequence. Then, we
implemented stratification to ensure that the distribution of
specific cancer types or stages in our training and testing sets
mirrored that of the entire dataset. This is paramount to avoid
potential biases and to ensure that our models have a
representative sample of the different cancer types and stages
present in the entire dataset. Following stratification, we
allocated 80% of the data (16,270 patient records) to the training
set while reserving the remaining 20% (4068 patient records)
for the test set. This approach provides a robust foundation for
model development and validation, ensuring both broad and
deep representation of the dataset in our training and testing
phases.

Selection and Screening of ML Models for Cancer
Survival Prediction
This study used 5 ML algorithms—XGBoost, naive Bayes,
decision tree, logistic regression, and random forest—to predict
cancer survival rates using the MSK-MET dataset. XGBoost
was selected for its efficiency in handling sparse data and
combining models to improve accuracy through ensemble
learning. Naive Bayes, a simple classifier applying Bayes
theorem, was chosen for its efficiency in high-dimensional
datasets. The decision tree, known for its easy visualization and
handling of nonlinear relationships, was included for its
interpretability. Logistic regression was used for binary
classification, predicting survival probabilities, while random
forest, an ensemble method using multiple decision trees, was
chosen for its accuracy and control over overfitting in large
datasets.
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Hyperparameter Optimization Via Grid Search and
Model Training
Grid search with hyperparameter tuning was applied to all 5
ML models. For XGBoost, parameters “n_estimators”
(50-1000), “max_depth” (1-10), and “learning_rate” (0.01-0.3)
were adjusted to optimize the number of trees, tree depth, and
learning speed. Naive Bayes was tuned by varying “alpha”
(0.01-10.0), “binarize” (0.0, 0.5, 1.0), and “fit_prior”
(True/False). The decision tree’s grid search adjusted
“max_depth” (None-10), “min_samples_split” (2, 5, 10),
“min_samples_leaf” (1, 2, 4), and “criterion” (“gini” or
“entropy”). Logistic regression was optimized with “C”
(0.001-1000), “penalty” (“l1,” “l2,” “elasticnet,” “none”), and
“solver” (“newton-cg,” “lbfgs,” “liblinear,” “sag,” “saga”).
Random forest explored “n_estimators” (50, 100, 200) and
“max_features” (“auto,” “sqrt”).

Using 5-fold cross-validation on the MSK-MET dataset, we
trained the 5 classifiers to identify a robust, interpretable
predictor and to derive a cohort-wide view of metastatic patterns.

Model Evaluation
After training and testing the ML models on the MSK-MET
dataset, we assessed their performance using 2 key metrics: the
classification report (Table S2 in Multimedia Appendix 1) and
AUROC (Figure 2). The AUROC measures the model’s ability
to distinguish between classes, with higher AUC indicating
better prediction. A score of 1 represents perfect predictions,
0.5 indicates random guessing, and below 0.5 suggests worse
than random predictions. These metrics provide a comprehensive
evaluation, ensuring the models not only predict accurately but
also effectively identify positive cancer cases. This approach
helps in selecting the best model for predicting cancer survival,
balancing the need to detect true cases while minimizing false
diagnoses.

Figure 2. Receiver operating characteristic (ROC) curves for the 5 tuned classifiers on the held-out Memorial Sloan Kettering-Metastatic test set. Each
curve shows the trade-off between sensitivity and 1 – specificity across decision thresholds, with corresponding area under the curve values summarized
in Table 2. The extreme gradient boosting (XGBoost) model achieves the steepest ROC trajectory and highest area under the receiver operating
characteristic curve (AUROC=0.82), indicating the strongest discrimination between surviving and deceased patients, while random forest and logistic
regression (LogisticReg) form an intermediate tier, and decision tree and Bernoulli naive Bayes (BernoulliNB) exhibit comparatively weaker performance.

To characterize operating-point behavior, we computed
threshold-dependent trade-offs of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN);
sensitivity, specificity, precision, negative predictive value

(NPV), F1-score, balanced accuracy, Matthews correlation
coefficient (MCC), Cohen κ, and accuracy at 3 decision
thresholds: a fixed 0.50, the Youden J optimum, and a clinically
constrained point targeting sensitivity ≥0.85. Scalar metrics

JMIR Cancer 2026 | vol. 12 | e74196 | p. 5https://cancer.jmir.org/2026/1/e74196
(page number not for citation purposes)

Nalela et alJMIR CANCER

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


were accompanied by 95% CI obtained via a 1000-sample
stratified bootstrap.

To obtain unbiased estimates and avoid tuning leakage, we used
nested repeated cross-validation on the training data. The outer
loop applied RepeatedStratifiedKFold (5 folds × 10 repeats);
within each outer training split, an inner 5-fold GridSearchCV
tuned hyperparameters per model. Inner-tuned models were
then scored on their corresponding outer validation splits,
yielding a matrix of outer cross-validation (CV) results. The
model with the highest mean outer-CV performance was refit
on the full training set using the selected hyperparameters and
evaluated once on the held-out test set (reporting accuracy,
AUROC, and a confusion matrix).

For statistical comparison across the 5 models, we ran a
Friedman omnibus test on the outer-CV score matrix. As a
prespecified confirmatory analysis, we tested the directional
hypothesis that random forest ≥ each baseline using 1-sided
Wilcoxon signed-rank tests with Holm correction; we also
reported effect sizes (mean and median paired differences) with
95% paired bootstrap CI. For rank-based visualization and
exploratory post hoc inference, we computed average ranks
with a Nemenyi critical-difference diagram and performed
1-sided Wilcoxon tests comparing the top-ranked model to the
remaining models (Holm-adjusted). Where paired per-example
test predictions were available, we used the McNemar test to
compare error patterns between 2 models.

Cancer Survival Prediction With XGBoost
XGBoost was therefore chosen for the rest of the analyses,
involving both pan-cancer and cancer-specific models,
metastatic cancer survival prediction, and survival analysis. To
enhance transparency and clinical interpretability, we adopted
a 2-tier XGBoost design. First, a unified XGBoost model was
trained without the “Cancer Type” variable, leveraging clinical
and demographic features to capture signals that generalize
across diseases. Second, we trained cancer-specific XGBoost
models for the 5 largest cancer groups identified in the cohort
to capture within-disease interactions that can be diluted in a
single global model. This combination provides both a
cross-cancer perspective and disease-tailored insights that reflect
differences in metastatic behavior and treatment context. In the
final evaluation for both global and cancer-specific analysis,
we focused only on measuring accuracy and AUC score.

Model Interpretation and Explanation
To enhance the understandability and transparency of our
predictions, we used XGBoost and SHAP for model
explainability. SHAP, based on game theory, provides a detailed
and consistent measure of feature importance by computing
each feature’s contribution to the prediction. SHAP values
represent a feature’s responsibility for a change in the model
output, ensuring local accuracy, missingness, and consistency.
This method quantifies the impact of each feature on predictions
and explains how the presence or absence of a feature affects
the outcome. In our SHAP analysis, survival is the positive
class. Beeswarm plots are particularly useful for visualizing
SHAP values, showing features’ influence and variability in a
nuanced manner.

Survival Analysis
Following the training of the XGBoost ML model and SHAP
analysis, the most important features, such as metastatic site
count, tumor mutational burden (TMB), and specific organ
metastases (eg, liver, bone, and lung) influencing patient
survival, were identified and used in the survival analysis. The
primary goal was to examine the duration from cancer diagnosis
to patient death, assessing how clinical and genomic variables
impact survival times. We used Kaplan-Meier survival analysis,
CPH modeling, log-rank tests for comparing survival
distributions, and XGBoost survival analysis to deepen our
understanding of patient outcomes. All of the original data was
used in the survival analysis.

Kaplan-Meier Survival Analysis
The Kaplan-Meier estimator was used to evaluate survival
probabilities over time across different patient subgroups.
Patients were stratified based on key features identified from
SHAP analysis. Survival curves were compared using the
log-rank test to assess statistically significant differences
between groups. A P value of <.05 was considered statistically
significant. The analysis was first performed on all the data to
assess survival of patients with metastatic versus nonmetastatic
disease and then on subgroups of the top 5 cancer types
including non–small cell lung cancer, colorectal cancer, breast
cancer, pancreatic cancer, and prostate cancer.

CPH Model
The CPH model was applied to assess the influence of multiple
covariates on patient survival while controlling for potential
confounders. Key covariates included metastatic site count,
fraction of genome altered, TMB, and distant metastases in
specific organs. The proportional hazards assumption was
evaluated using Schoenfeld residuals, and any violations were
addressed through stratification or inclusion of time-varying
covariates. Hazard ratios with corresponding 95% CI were
reported to quantify risk associations.

Log-Rank Test
To further compare survival distributions between different
patient cohorts, the log-rank test was applied. This test was used
to determine whether survival differences observed between
patient subgroups (eg, metastatic vs nonmetastatic) were
statistically significant. The resulting P values guided the
identification of meaningful clinical predictors. Furthermore, a
plot was generated for the Kaplan-Meier survival curves with
the overall survival (months) on the x-axis and survival
probability on the y-axis.

XGBoost Survival Analysis
To capture complex, nonlinear relationships and interactions
among variables, XGBoost survival analysis was implemented.
This adaptation of XGBoost used a Cox-based loss function to
accommodate censored survival data. Hyperparameter tuning
was conducted using grid search, optimizing parameters such
as “n_estimators,” “max_depth,” and “learning_rate.” The
model’s C-index was used to evaluate predictive performance.
SHAP values were also applied to the survival model to interpret
feature importance and explore individual risk predictions.
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Ethical Considerations
This study analyzed secondary, noninterventional data from the
MSK-MET cohort obtained via a publicly accessible repository
(cBioPortal for Cancer Genomics). All records used for
modeling and statistical analysis were anonymous and
deidentified prior to access; no direct identifiers (eg, names,
street addresses, full dates of birth, medical record numbers) or
indirect reidentification keys were available to the research
team. Because only deidentified data were used and no contact
with human participants occurred, the work was considered
non–human participants research and did not require informed
consent or additional institutional review.

Data handling procedures followed best-practice privacy
safeguards. Working datasets were stored on access-controlled
systems. We did not attempt any record linkage or
reidentification. To support responsible AI, model development

incorporated transparent methods (eg, SHAP explanations) and
prespecified subgroup evaluations to screen for potential
performance disparities. All code and evaluation protocols are
shared to enable reproducibility without exposing any protected
information.

Results

Model Performance
The evaluation of the 5 distinct models on the MSK-MET
dataset yielded a spectrum of performances. The overall
classification performance for the 5 classifiers is summarized
in Table 2. Receiver operating characteristic (ROC) curves are
shown in Figure 2, and precision-recall curves are shown in
Figure S2A, calibration in Figure S2B, decision-curve analysis
in Figure S2C, and threshold-dependent metrics in Figure S2D
in Multimedia Appendix 1.

Table 2. Discrimination and calibration of tuned classifiers on the same test set. Reported are area under the curve (AUC), area under the precision-recall
curve (AUPRC), and Brier score, each with 95% CIs; the outcome prevalence was 0.50. Extreme gradient boosting (XGBoost; lr=0.01; depth=5; n=500)
showed the strongest overall performance, with the highest AUC and AUPRC and the lowest Brier score, followed by random forest, while logistic
regression, decision tree, and naive Bayes exhibited progressively lower discrimination and less favorable calibration.

Brier score (95% CI)AUPRC (95% CI)AUC (95% CI)Model

0.17 (0.16-0.18)0.83 (0.81-0.85)0.82 (0.81-0.84)XGBoost (lr=0.01; depth=5; n=500)

0.18 (0.18-0.19)0.81 (0.79-0.82)0.80 (0.78-0.81)Random forest (n_estimators=200; max_features=auto)

0.19 (0.18-0.19)0.79 (0.77-0.81)0.79 (0.78-0.81)Logistic regression (C=10; l2; liblinear)

0.19 (0.18-0.20)0.78 (0.76-0.80)0.78 (0.77-0.80)Decision tree (gini; depth=8; min_leaf=1; min_split=10)

0.21 (0.20-0.22)0.77 (0.75-0.79)0.78 (0.77-0.80)Naive Bayes (α=10.0; binarize=0.5; fit_prior=False)

XGBoost demonstrated the strongest discrimination and
probability quality. It achieved an AUC of 0.82 (95% bootstrap
CI 0.81-0.84) and the highest area under the precision-recall
curve (AUPRC) at approximately 0.83 against a baseline
precision equal to the prevalence (0.50; Table 2 and Table S2
in Multimedia Appendix 1). In accuracy terms, XGBoost
reached 0.74 (3010/4068) and, for our summary counts,
corresponded to 3335 out of 4068 test patients correctly stratified
at the chosen operating point. Random forest (AUC=0.80;
AUPRC=0.81) and logistic regression (AUC=0.79;
AUPRC=0.79; accuracy=0.72; 2929/4068) formed a consistent
middle tier, while decision tree and Bernoulli naive Bayes trailed
slightly (both AUC=0.78; accuracy=0.72; 2929/4068; correctly
stratified=3173/4068 for AUC-aligned counts; see Table 3 and

Table S3 in Multimedia Appendix 1 for detailed counts and
metrics). These rankings were concordant across ROC and
precision-recall analyses and remained stable across
threshold-dependent operating points (fixed threshold=0.50,
Youden J optimum, and a clinically constrained sensitivity
≥0.85; Figure 2; Figures S2A and S2D and Tables S2 and S3
in Multimedia Appendix 1).

Calibration analyses reinforced this ordering. XGBoost produced
the lowest Brier score (approximately 0.17; Table 2; Table S2
and Figure S2B in Multimedia Appendix 1) and a reliability
curve that closely tracked the 45° line, with logistic regression
comparably well-calibrated, whereas Bernoulli naive Bayes
deviated most at the extremes (Table 2; Table S2 and Figure
S2B in Multimedia Appendix 1).
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Table 3. Compact comparison of 5 classifiers across 3 operating points, that is, default probability cutoff (0.50), Youden J (threshold maximizing
sensitivity + specificity – 1), and a high-sensitivity setting (constrained to sensitivity ≥0.85). For each model-threshold pair, we report sensitivity,
specificity, Matthews correlation coefficient (MCC), and accuracy; thresholds are applied to the predicted positive-class probability. This summary
emphasizes decision-relevant trade-offs: balanced performance at Youden J and the specificity cost of prioritizing high sensitivity. In this cohort, extreme
gradient boosting (XGBoost) yields the strongest balanced performance (highest MCC and accuracy) at Youden J while retaining the best specificity
among the high-sensitivity operating points.

AccuracyMCCSpecificitySensitivityThresholdModel and operating point

Naive Bayes

0.720.440.780.660.50Probability cutoff 0.5

0.720.440.780.650.50Youden J

0.690.390.520.850.15Sensitivity ≥0.85

Decision tree

0.720.430.710.720.50Probability cutoff 0.5

0.720.450.800.640.56Youden J

0.670.370.490.860.32Sensitivity ≥0.85

Logistic regression

0.730.450.730.730.50Probability cutoff 0.5

0.730.460.770.690.53Youden J

0.690.410.540.850.38Sensitivity ≥0.85

Random forest

0.720.450.760.690.50Probability cutoff 0.5

0.730.460.750.700.49Youden J

0.690.410.540.850.32Sensitivity ≥0.85

XGBoost

0.750.500.780.720.50Probability cutoff 0.5

0.750.500.780.720.50Youden J

0.720.450.580.850.33Sensitivity ≥0.85

Threshold-dependent performance, summarized from confusion
matrix–derived metrics at 3 operating points, made the error
trade-offs explicit (Table 2; Table S3 and Figure S2D in
Multimedia Appendix 1). At a fixed 0.50 threshold essentially
indistinguishable from the Youden J optimum on this balanced
test set, XGBoost balanced sensitivity and specificity most
effectively (sensitivity=0.72; specificity=0.78; positive
predictive value (PPV)=0.77; NPV=0.74; F1-score=0.74;
MCC=0.50; accuracy=0.75). Under a clinically constrained
operating point prioritizing case-finding (sensitivity ≥0.85),
XGBoost required a threshold of approximately 0.33 and
achieved a sensitivity of 0.85 (specificity=0.58; PPV=0.67;
NPV=0.80; F1-score=0.75; MCC=0.45; accuracy=0.72). The
corresponding counts at this setting were TP=1731, FP=846,
TN=1188, and FN=303 (n=4068). Comparator models met the
same sensitivity target with lower specificity and weaker
composite indices; for example, random forest and logistic
regression both settled near a specificity of 0.54 with
MCC=0.41, while decision tree and Bernoulli naive Bayes lost
additional specificity and MCC. These results indicate that,
when sensitivity is held high, XGBoost preserves more TNs

and maintains stronger global agreement (MCC, balanced
accuracy).

Decision-curve analysis supported the same ordering of clinical
use across a broad range of threshold probabilities
(approximately 0.15-0.70), with XGBoost yielding the highest
net benefit, random forest next, and logistic regression close
behind (Figure S2C and Table S2 in Multimedia Appendix 1).
Together with the calibration findings, these analyses suggest
that XGBoost not only separates cases from controls most
effectively but also produces usable risk estimates for
thresholding and shared decision-making.

Furthermore, when the global XGBoost model was compared
to cancer-specific XGBoost models for the top 5 cancer types
(non–small cell lung, colorectal, breast, pancreatic, and prostate
cancer; Tables 4 and 5), the prostate cancer model emerged as
the most accurate, with an AUC of 0.88 and an accuracy of
0.84. (268/319 test patients) and an AUC of 0.88 (281/319 test
patients correctly stratified). Meanwhile, pancreatic cancer
posted a lower AUC of 0.68 (236/348 test patients correctly
stratified), reflecting greater challenges in classification for that
subgroup.
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Table 4. Condensed Cox proportional hazards model for overall survival in the Memorial Sloan Kettering-Metastatic cohort. Hazard ratios (HRs), 95%
CIs, and P values are reported for the most influential covariates identified in the global model, showing that metastatic status, higher metastatic site
count, increased tumor mutational burden (TMB), greater fraction of genome altered, and distant metastases to liver, bone, and lung are all associated
with significantly elevated mortality risk, whereas primary sample type is modestly protective.

P valueHR (95% CI)Risk factor

<.0012.18 (1.97-2.42)Patient with metastatic disease

<.0011.03 (1.02-1.04)Metastatic site count

<.0011.00 (0.99-1.00)TMB (nonsynonymous)

<.0011.32 (1.19-1.46)Fraction of genome altered

<.0010.87 (0.83-0.90)Sample type (primary=ref)

<.0011.81 (1.73-1.90)Distant metastasis: liver

<.0011.43 (1.37-1.50)Distant metastasis: bone

<.0011.16 (1.11-1.22)Distant metastasis: lung

Table 5. Comparison of classification performance between the unified or global extreme gradient boosting (XGBoost) model and cancer-specific
XGBoost models. Overall accuracy and area under the curve (AUC) are reported for each classifier, showing that while the global model achieves strong
baseline discrimination (accuracy=0.74; AUC=0.82), several cancer-specific models, particularly prostate and breast cancer, attain even higher AUCs
(0.88 and 0.85, respectively), whereas the pancreatic cancer model lags behind, reflecting underlying heterogeneity in predictability across tumor types.

AUC scoreAccuracy scoreClassifier

0.820.74Unified or global model

0.790.71Non–small cell lung model

0.810.73Colorectal cancer model

0.850.76Breast cancer model

0.680.72Pancreatic cancer model

0.880.84Prostate cancer model

Model Explainability
The SHAP analysis of the global XGBoost model established
a clear hierarchy of feature importance, identifying metastatic
site count, TMB, fraction of genome altered, and distant
metastases to the liver and bone as the predominant prognostic

factors (Figure 3 and Table S6 in Multimedia Appendix 1). The
beeswarm plots for these top features demonstrated a robust
predictive power, with high and low feature values cleanly
separating along the SHAP value axis, indicating a consistent
and strong directional impact on model output (Figures S3A-S3E
in Multimedia Appendix 1).

JMIR Cancer 2026 | vol. 12 | e74196 | p. 9https://cancer.jmir.org/2026/1/e74196
(page number not for citation purposes)

Nalela et alJMIR CANCER

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Shapley additive explanations (SHAP) beeswarm plot for the global extreme gradient boosting (XGBoost) mortality classifier in the Memorial
Sloan Kettering-Metastatic cohort. Features are ordered by mean absolute SHAP value, highlighting metastatic (Met) site count, tumor mutational
burden (TMB), fraction of genome altered (FGA), and distant metastases to the liver and bone as the strongest drivers of model predictions. Each point
represents a patient, with horizontal position indicating the direction and magnitude of impact on predicted mortality risk and color denoting low (blue)
to high (red) feature values, illustrating how extreme values systematically shift risk estimates. Central nervous system is denoted by CNS.

This analysis was extended to cancer-specific models, revealing
a critical dual perspective, that is, the core features identified
in the global model recurrently ranked among the most important
across individual cancer types, while disease-specific features
also emerged. For instance (Table S6 and Figures S3A-S3E in
Multimedia Appendix 1), the global top features like metastatic
burden and liver metastases remained highly influential in
specific models such as colorectal and prostate cancer.
Concurrently, the models identified context-specific predictors,
such as distant metastasis in the lung for non–small cell lung
cancer, sample type for breast cancer, and distant metastasis in

the male genital for prostate cancer (Figure 3; Figures S3D and
S3E in Multimedia Appendix 1). This underscores that while a
common set of pan-cancer drivers exists, the models successfully
capture nuanced, disease-specific metastatic behaviors.

The consistent importance of features like metastatic site count
was further validated by the SHAP force plot (Figure 4), which
visually confirmed that an increasing number of metastatic sites
directly correlated with a higher model output for mortality risk,
reinforcing the clinical and biological plausibility of the model’s
predictions.
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Figure 4. Shapley additive explanations force plot illustrating the impact of metastatic (Met) site count on predicted mortality risk for the first 1000
patients in the Memorial Sloan Kettering-Metastatic test set. Each horizontal bar represents an individual patient, with the baseline prediction shown at
the center and shifts toward higher (right, red) or lower (left, blue) mortality risk driven by the number of metastatic sites. The consistent rightward
push associated with increasing metastatic site count visually confirms its strong, monotonic contribution to higher predicted risk, reinforcing the
biological and clinical plausibility of the extreme gradient boosting model’s behavior.

Survival Analysis
In the Kaplan-Meier analysis (Figure 5 and Table S7 in
Multimedia Appendix 1), patients were stratified into
“metastatic” and “nonmetastatic” groups to compare differences
in overall survival. The survival probability of patients in the
metastatic group was notably lower than that of the

nonmetastatic group, as seen in the pronounced separation of
their survival curves. By approximately 80 months, patients
with metastatic disease exhibited a survival probability of 0.30
(3041/10,169 patients with metastatic disease) versus 0.80
(8135/10,169 patients without metastatic disease), underscoring
the substantial impact of metastatic status on long-term survival
outcomes.

Figure 5. Kaplan-Meier survival curves comparing overall survival in patients with vs without metastatic disease in the Memorial Sloan
Kettering-Metastatic cohort. Patients with metastases demonstrate markedly lower survival probabilities and earlier median survival times than patients
without metastases, underscoring the substantial impact of metastatic status on long-term outcomes.

Subgroup survival results for the top 5 cancer types were as
follows: in non–small cell lung cancer (n=4686), 43.75%

(n=2050) of patients experienced an event and 82.5% (n=3866)
presented with metastatic disease; the median overall survival
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was 17.7 (IQR 8.4-33.2) months. In colorectal cancer (n=3541),
the event rate was 33.52% (n=1187), the metastatic proportion
was 90.82% (n=3216), and the median survival was 17.5 (IQR
10-30) months.

In breast cancer (n=2601), 35.64% (n=927) experienced an
event and 76.47% (n=1989) had metastatic disease, with a
median survival of 33 (IQR 14.4-43.4) months. In pancreatic
cancer (n=1981), the event rate was 60.27% (n=1194), the
metastatic proportion was 93.54% (n=1853), and the median
survival was 11.6 (IQR 4.2-21.8) months. Finally, in prostate
cancer (n=2166), 26.45% (n=573) experienced an event and
81.12% (n=1757) had metastatic disease, with a median survival
of 21.6 (IQR 11.6-38.2) months (Figure S5A-S5E in Multimedia
Appendix 1).

In the CPH model (Table 4), factors like metastatic site count,
TMB, fraction of genome altered, and distant metastases
displayed hazard ratios above 1.0, indicating an increased risk
of mortality. These relationships attained statistical significance,
with P values under the established threshold. The proportional
hazards assumption was checked through Schoenfeld residuals,
and only minor deviations were noted, which did not
substantially affect the covariate estimates. The model’s C-index
reached approximately 0.66, reflecting moderate predictive
power in distinguishing survival outcomes among different
patient subgroups.

An XGBoost survival model, fitted with a Cox-based loss
function, achieved a higher C-index (0.7) than the standard Cox
model. In Table S7 in Multimedia Appendix 1, the model’s
important features are displayed, with distant metastasis, TMB,
and fraction of genome altered, among others, listed as the most
important features that influence the prediction.

Discussion

Principal Findings
Using a large, multitumor metastatic cohort (MSK-MET), we
developed explainable ML models for survivability prediction
and complemented them with time-to-event modeling. Among
conventional classifiers, XGBoost delivered the best overall
performance, achieving an accuracy of 0.74 and AUC=0.82 on
the held-out test set. In parallel, an XGBoost-Cox variant
improved time-to-event concordance over a standard Cox model
(C-index=0.70 vs 0.66, with key hazard ratios from the Cox
model). Model explanations (SHAP) and hazard-based analyses
converged on clinically recognizable prognostic factors: the
number of metastatic sites, TMB, fraction of genome altered,
and the presence of liver and bone metastases, while
cancer-specific performance varied in biologically plausible
ways (eg, higher AUC in prostate and lower in pancreatic). At
the Youden-optimal threshold, PPV was approximately 70%
and NPV approximately 80%, indicating practical use for risk
stratification in balanced decision contexts. We expand the
discussion of these findings in the following subsections.

Model Performance, Robustness, and Benchmarking
Our evaluation moved beyond accuracy to provide a
comprehensive assessment across discrimination, calibration,
operating-point trade-offs, and clinical use. XGBoost

consistently emerged as the most dependable model, with its
incremental gains in AUC and AUPRC translating into more
favorable confusion-matrix profiles at clinically relevant
thresholds. For instance, when sensitivity is constrained to be
high, XGBoost retains more specificity and a higher MCC,
reducing FPs without sacrificing case finding. Its well-calibrated
probability estimates are crucial for decision support, enabling
rational threshold selection and clear communication of absolute
risk.

The model’s practical use is further evidenced by its
performance across different decision contexts. For balanced
decision-making, a default threshold near 0.50 (coinciding with
the Youden J optimum) provides a sensible starting point. In
triage-like scenarios demanding high sensitivity, a lower
threshold around 0.33 yields sensitivity near 0.85 with tolerable
specificity losses and an NPV around 0.80. Decision-curve
analysis confirmed that XGBoost provides a larger net benefit
across a wide band of threshold probabilities, suggesting
robustness to varying clinical preferences.

These performance results harmonize with model explanations
and survival evidence. SHAP analyses validate that predictions
are driven by biologically sensible covariates, while survival
curves and hazard ratios show coherent, directionally consistent
effects. This triangulation across discrimination, calibration,
interpretability, and survival analysis adds credibility that the
learned signal reflects underlying disease biology rather than
being an artifact of the classifier or data split.

Parameter Sensitivity and Model Robustness
During extensive grid-search tuning, we found that XGBoost
hyperparameters, especially tree depth, learning rate, and
number of estimators, greatly influenced AUC and classification
accuracy. Shallow trees underfit, while deeper ones improved
performance but risked overfitting in smaller cancer-specific
cohorts. Learning rates below 0.05 caused slow convergence,
while overly high rates destabilized training. Despite this
variability, certain predictive features, particularly metastatic
burden and genomic alterations, remained consistently
impactful, underscoring the robustness of our model. Future
research could explore adaptive optimization techniques such
as Bayesian optimization or reinforcement learning for enhanced
generalizability.

Is the Performance “Good Enough”?
The discriminatory performance of prognostic models is central
to their clinical use. In oncology, C-index or AUC of at least
0.70 is generally regarded as the minimum threshold for clinical
usefulness, while values exceeding 0.80 are considered strong
and often necessary for clinical translation [36,37]. These
interpretive standards are rooted in established methodological
work on ROC analysis, where AUC values between 0.7 and 0.8
are typically described as “acceptable” and those above 0.8 as
“excellent” [36,37].

Evidence from systematic reviews of head and neck cancer
prognostic models demonstrates how these thresholds translate
into practice. Philip et al [38] reported that most radiomics-based
prognostic models achieved C-indices below 0.70, underscoring
their weak discriminatory power and limited clinical
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applicability. In contrast, externally validated models that
approached or exceeded the 0.80 mark, as summarized by
Dretzke et al [39], were identified as more robust and clinically
relevant, supporting their potential integration into patient
management. These findings emphasize that models below the
0.70 threshold may remain academically interesting but lack
sufficient reliability for routine use, whereas those meeting or
surpassing 0.80 provide stronger grounds for clinical adoption.

Comparisons with deep learning approaches further reinforce
this interpretation. Gouthamchand et al [40] found that the most
competitive deep learning models in head and neck oncology
consistently achieved AUCs of 0.80 or higher, placing them
above many handcrafted radiomics models. This pattern suggests
that 0.80 represents not merely an aspirational benchmark but
an increasingly practical requirement for prognostic tools aiming
to match or surpass the performance of advanced ML methods
already being piloted in clinical contexts.

Regulatory precedents also align with this threshold. Analyses
of Food and Drug Administration (FDA)–cleared AI- and
ML-enabled medical devices, such as the LumineticsCore
software, indicate that most systems demonstrate discriminatory
performance in the high 0.7 to 0.9 range, with pivotal studies
for devices such as IDx-DR reporting AUCs above 0.80. Joshi
et al [41] provide a comprehensive overview of this landscape,
confirming that AUCs in this range are characteristic of AI
systems deemed safe and effective for clinical use. FDA
guidance similarly emphasizes the importance of demonstrating
robust discriminatory performance in supporting claims of
clinical effectiveness [42].

However, the thresholds discussed here should not be treated
as rigid cutoffs. Clinical acceptability is not defined by a single
number but by the context of the decision, the potential harms
and benefits, and the baseline risk of the population. In
high-stakes oncology decisions such as treatment intensification
that carries significant morbidity, a well-calibrated model with
an AUC of 0.78 but demonstrable net benefit at clinically
relevant thresholds may be more valuable than a model with an
AUC of 0.84 that is poorly calibrated or unstable. Thus,
performance thresholds should be interpreted as contextual
benchmarks rather than universal standards.

It is also important to recognize that discrimination does not
equal usefulness. AUC or C-index quantifies a model’s ability
to rank patients by risk, but it does not measure whether the
absolute risk estimates are accurate. For clinical practice,
calibration is equally critical whether a patient predicted to have
a 30% risk actually experiences that outcome about 30% of the
time. Calibration-in-the-large, calibration slope, Brier score,
and visual calibration plots provide this essential information.
Moreover, calibration at clinically meaningful cut points (eg,
deciles of predicted risk) is necessary to ensure predictions are
trustworthy for patient counseling and decision-making.

Finally, prognostic end points in oncology are often
time-to-event outcomes. In such settings, the C-index is
commonly used, but time-dependent AUCs provide more
clinically interpretable information by specifying the prediction
horizon (eg, 12-month or 36-month survival). This allows
clinicians to understand how well the model performs over the

actual time frames relevant to follow-up and treatment decisions.
Where applicable, handling of censoring and competing risks
should also be reported, particularly if the terminal outcome is
mortality.

Taken together, these considerations emphasize that while an
AUC ≥0.80 is encouraging and aligns with many published
benchmarks, true clinical use depends on calibration,
decision-curve analysis, and performance at specific decision
thresholds relevant to patient care.

Clinically Actionable Metrics, Implications, and Use
The performance metrics of our optimal XGBoost model are
translated into clinically actionable insights through
decision-curve analysis. At the threshold maximizing the
Youden index, the model achieves a PPV of 70.3% and an NPV
of 79.8%. This indicates that a high-risk prediction from the
model would correspond to an actual terminal outcome in
approximately 7 out of 10 cases, supporting its use in justifying
intensified monitoring or treatment. Conversely, the high NPV
means 8 out of 10 low-risk predictions correctly identify patients
with a more favorable prognosis, providing a quantitative basis
for discussions about de-escalating care and reducing
treatment-related morbidity.

Critically, the decision-curve analysis confirms the model’s
practical use across a spectrum of clinical decision-making
preferences. The analysis demonstrates that the XGBoost model
provides a superior net benefit compared to both alternative
models and the default strategies of treating all or no patients
across a wide range of threshold probabilities. This indicates
that using the model to guide decisions is clinically
advantageous regardless of whether the clinician prioritizes
avoiding FPs (overtreatment) or FNs (missed interventions).
The point at which the net benefit of the model crosses the “treat
all” strategy is particularly important, as it defines the minimum
probability at which the model’s prediction becomes more useful
than intervening in every case. The sustained positive net benefit
of our model underscores its robustness and potential to improve
patient outcomes by aligning interventions with individualized
risk.

The combination of strong predictive performance and model
explainability supports several immediate clinical use cases:
(1) patient triage and counseling via individualized risk
summaries, (2) treatment planning and shared decision-making
aided by feature-level rationales, and (3) integration into
electronic health record (EHR)–embedded dashboards for
longitudinal monitoring. The top predictive features are routinely
available in most cancer centers, facilitating adoption with
minimal workflow disruption.

Model Explainability and Biological Plausibility
Our model selection was guided by metrics that reflect clinical
reality, prioritizing both accuracy and AUROC. The AUROC
is especially critical in medical settings, as it captures the
essential balance between TPs and FPs, where the cost of FNs
(missed cases) is high [43]. This evaluation consistently
identified XGBoost as the top performer. Its superior ability to
capture complex, nonlinear relationships within
high-dimensional clinical and genomic data, as evidenced by
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its significant lead over other models, aligns with established
literature on gradient boosting for cancer predictions [44,45].
The model’s discriminative power is substantial, with an AUC
of 0.82 representing an excess over chance of 0.32. This can be
intuitively communicated as a “number needed to screen” of
approximately 3-4 patients to identify 1 additional correct
classification relative to chance, providing a tangible sense of
clinical yield. This strong performance is operationalized at the
Youden-optimal threshold, where PPV of approximately 70%
and NPV of approximately 80% offer concrete use for risk
stratification, effectively ruling in or ruling out high-risk status
to guide downstream clinical actions.

Crucially, this high performance is rendered transparent and
trustworthy through SHAP-based interpretation. The model’s
decisions are not black box outputs but are demonstrably driven
by biologically plausible features that align with oncological
principles. SHAP analysis consistently identified metastatic site
count, liver and bone metastases, TMB, and fraction of genome
altered as the top predictors; moreover, these findings are
well-supported in the literature [46]. This biological plausibility
was further refined and validated in our cancer-specific models.
For example, the prominence of lung metastases in non–small
cell lung cancer and prostate cancer models, and the major role
of sample type in the breast cancer model, demonstrate a
nuanced understanding of disease-specific pathophysiology as
pointed out in other studies [47]. The distinct, right-skewed
SHAP distribution for “metastatic count” and its direct
correlation with risk in force plots further reinforced the
importance of total lesion burden in driving high-risk
predictions. This coherence between model explanations and
established clinical knowledge across both pan-cancer and
disease-specific contexts is fundamental for building clinician
trust and facilitating the integration of this tool into point-of-care
decision support.

Survival Modeling and Risk Stratification

Time-to-Event Insights
Survival analysis confirmed classification results. Kaplan-Meier
curves revealed steep survival drops in patients with versus
without metastatic disease (0.3 vs 0.8 at 80 months). Traditional
Cox models identified high hazard ratios for metastatic site
count, TMB, and fraction of genome altered but struggled with
their linearity assumptions (C-index=0.66). In contrast,
XGBoost-based survival modeling better captured nonlinearity,
achieving a higher C-index of 0.70.

Subgroup Survival Analysis
The 5 disease-specific results highlight substantial heterogeneity
in survival outcomes across cancer types within the same
analytic framework. Pancreatic cancer exhibited the shortest
median survival alongside the highest event rate and metastatic
proportion, underscoring its aggressive clinical course even
within a predominantly metastatic cohort. By contrast, breast
cancer showed the longest median survival (as visualized in the
respective Kaplan-Meier curves) despite a sizable metastatic
share, suggesting comparatively slower disease trajectories and
greater effectiveness of available therapies in this subgroup.
Non–small cell lung cancer and colorectal cancer shared similar

median survivals near 17-18 months, though colorectal cancer
carried the highest metastatic proportion among the five. This
juxtaposition implies that crude metastatic prevalence alone
does not fully account for survival differences, motivating
disease-specific modeling of covariates and sites of spread.
Prostate cancer combined the lowest event rate with a midrange
metastatic proportion and an intermediate median survival,
indicating a slower accumulation of events over time relative
to the other cancers. Together, these patterns justify presenting
separate Kaplan-Meier curves and parsimonious Cox summaries
per cancer type, while enabling a consistent cross-cancer
narrative that focuses on differences in event rates, metastatic
burden, and median survival.

Novelty and Comparison to Prior Work
Although significant studies [48-52] (Table S8 in Multimedia
Appendix 1) have been conducted in the realm of predicting
cancer survivability, our work stands out by bringing new
enhancements that significantly contribute to better prediction
of cancer survivability, particularly by the thorough comparison
of ML models, the strategic use of both global and
cancer-specific models, in-depth model explainability using
SHAP values, and detailed survival analysis.

First, we begin by comparing 5 different ML models (XGBoost,
naive Bayes, decision tree, logistic regression, and random
forest), each rigorously tuned using exhaustive grid search for
hyperparameters. This approach ensures that each model is
thoroughly tested for the task of predicting cancer survivability,
a detail that is often overlooked in existing literature. Many
studies tend to focus on one or two models, without ensuring
that the models are fully evaluated for comparison. For example,
prior work done by Zhao et al [48], Tapak et al [49], and Nicolò
et al [50] evaluate models but lack the thoroughness in
hyperparameter tuning that our study provides. We believe that
this rigorous approach enhances the reliability of our findings
and provides a more comprehensive understanding of which
model performs best under specific conditions.

Moreover, we use a methodology that is designed to first use a
global model to gain a general overview of the most important
patterns and predictors for metastatic cancer survivability,
followed by a deeper dive into cancer-specific models. This
2-tiered approach is critical because it allows us to identify
broad patterns while also uncovering nuances that might be
missed or misinterpreted in a global model. Many published
studies, such as Kourou et al [51] and Zhao et al [48],
predominantly dwell on global accuracy metrics without taking
this crucial next step to explore more specific patterns within
subgroups of the data. By contrast, our approach provides a
dual perspective, that is, broad insights from the global model
and detailed, cancer-specific insights that we believe are
essential for advancing personalized medicine.

The use of SHAP values in our study is particularly noteworthy.
We did not just stop at model performance but delved deep into
explainability, first for the global model and then for the
cancer-specific models. This process allowed us to generate
refined explainability that highlights not just which features are
important, but how their importance varies across different types
of cancer. The use of SHAP in both global and specific contexts
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is a novel approach that we believe adds substantial value to
the study. While many studies, such as Maouche et al [52], use
SHAP or similar methods, they often do so at a surface level,
without the comprehensive, model-specific analysis that we
provide. This depth of analysis is crucial for understanding the
true implications of the model’s predictions and for making
informed clinical decisions.

Finally, we conduct survival analysis after predicting cancer
survival with explainable ML to translate model predictions
into clinically meaningful insights about patient outcomes over
time. While ML classifiers can distinguish between patients
likely to survive or not, survival analysis provides a
time-to-event perspective, capturing not just “if” but “when”
an event such as death occurs. This temporal dimension allows
researchers and clinicians to estimate hazard rates, median
survival times, and differences between risk groups. Coupled
with explainable ML (eg, SHAP values), survival analysis also
helps validate whether the features driving predictions
correspond to biologically and clinically relevant risk factors.
Together, this integration strengthens both the predictive
performance and interpretability of the model, supporting its
potential use as a trustworthy decision-support tool in oncology
practice.

Limitations and Biases
We acknowledge several limitations that must be considered
alongside the model’s strong performance. First, generalizability
may be constrained by inherent biases in the MSK-MET dataset,
which is a single-institution cohort from a tertiary care center.
The sample underrepresents socioeconomically disadvantaged
and racially diverse populations, with non-White ethnicities
comprising less than 15%, and genomic profiling was
preferentially performed in advanced-stage cases, potentially
inflating the importance of features like TMB. These biases
may partly explain the performance disparities observed across
cancer types. Furthermore, technical limitations exist; for
instance, linear and naive Bayes baselines may have been
disadvantaged by the use of label encoding for categorical
variables.

These factors underscore the necessity for several future steps
before clinical deployment. External validation using diverse,

multicenter cohorts with stratified sampling is crucial to improve
equity, fairness, and generalizability. Prospective calibration
should be rechecked under local prevalence shifts, with
techniques like Platt scaling or isotonic regression applied, if
necessary. Additionally, prospective benchmarking against
oncologist-estimated prognoses and real-world deployment
outcomes will be critical to establish clinical noninferiority or
superiority. Finally, while this study provides a comprehensive
classification and survival analysis, future work should focus
on integrating these outputs; for example, by generating
risk-stratified Kaplan-Meier curves at chosen thresholds to unify
the decision framework across binary and time-to-event end
points.

Future Directions and Deployment Considerations

Improving Rare Cancer Predictions
Model performance was limited for rare cancers (eg, anal cancer:
n=68; AUC=0.61), due to data scarcity. To address this, we
suggest (1) using transfer learning to initialize models with
global XGBoost weights, (2) using synthetic oversampling (eg,
synthetic minority oversampling technique, adaptive synthetic
sampling) during training, and (3) leveraging federated learning
to aggregate data across institutions while preserving privacy.
These techniques can bolster performance in underrepresented
malignancies.

EHR Integration and Clinical Deployment
While the primary aim of this study was informatics-driven
discovery, the robustness of our model supports a clear pathway
for clinical translation through EHR integration. We envision
a real-time, standards-based system where automated risk alerts
are seamlessly integrated into clinical workflows, particularly
within tumor-board discussions (Figure 6). By leveraging Fast
Healthcare Interoperability Resources Representational State
Transfer hook events, patient risk scores could be dynamically
updated and surfaced directly within the EHR as cases are
reviewed. To ensure both privacy and computational efficiency,
the XGBoost model would be deployed as a containerized
service within the hospital’s secure analytics infrastructure (eg,
Epic Cogito), keeping protected health information on premises
while using available hardware acceleration.
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Figure 6. Electronic health record (EHR) integration and clinical deployment. Framework illustrating how patient risk scores and Shapley additive
explanations (SHAP)–based explanations are integrated into the EHR and surfaced during tumor-board discussions to enable transparent, real-time
clinical decision support. FHIR: Fast Healthcare Interoperability Resources; REST: Representational State Transfer; XGBoost: extreme gradient boosting.

A critical differentiator of this approach is the coupling of each
risk alert with a SHAP-based explanation embedded directly
into the oncology dashboard. This transforms the model from
a “black box” into an “explain-and-act” tool, providing clinicians
with immediate, interpretable rationale by highlighting the top
clinical and genomic features contributing to an individual’s
risk score. Alert protocols would be tiered and threshold-aware,
directly translating the model’s predictive values into actionable
clinical guidance. For instance, a low-risk classification
(supported by an NPV of 79.8%) could justify lengthening
follow-up intervals, while a high-risk flag (PPV of 70.3%) would
prompt rapid biomarker reassessment and discussion of
treatment intensification.

An initial rollout would prioritize safety and reliability through
a prospective pilot study, continuous performance monitoring
for model drift, and an implementation that minimally disrupts
existing workflows. The validation evidence and explainable
framework presented in this study provide a solid foundation
for a potential regulatory submission as a Class II clinical
decision support tool, paving the way for a new generation of
transparent, AI-augmented oncology care.

Conclusion
In this large-scale, pan-cancer study, we developed and validated
an interpretable ML framework for predicting survivability in
patients with metastatic cancer. By leveraging the
comprehensive MSK-MET cohort, we demonstrated that an
XGBoost classifier robustly predicts overall survival
(AUC=0.82, accuracy=0.74), outperforming other conventional
ML models. Crucially, the integration of SHAP explainability

illuminated the model’s decision-making process, consistently
identifying metastatic site count, TMB, fraction of genome
altered, and the presence of liver and bone metastases as major
prognostic features across diverse tumor types. This biological
plausibility is fundamental for building clinical trust.

Our 2-tiered modeling approach, combining a unified pan-cancer
perspective with targeted, cancer-specific submodels, provided
both broad generalizability and nuanced, disease-tailored
insights. This was evidenced by the varying performance across
cancer types, such as the high predictive accuracy for prostate
cancer (AUC=0.88) contrasted with the greater challenges in
pancreatic cancer (AUC=0.68). Furthermore, the survival
analysis corroborated the classification findings, with the
XGBoost-Cox model (C-index=0.70) capturing nonlinear
relationships more effectively than the traditional Cox model
(C-index=0.66), and Kaplan-Meier curves starkly illustrating
the significant survival disadvantage associated with metastatic
disease.

The clinical use of our model is underscored by its strong
predictive values (PPV=70% and NPV=80% at the
Youden-optimal threshold) and its demonstrated net benefit
across a range of decision thresholds. By reconciling high
performance with transparent, actionable explanations, this work
provides a foundational framework for the next generation of
clinical decision-support tools in oncology. Future efforts should
focus on external validation in multicenter cohorts, prospective
evaluation integrated within EHR systems, and addressing
performance gaps in rare cancer subtypes to ensure equitable
and widespread clinical adoption.
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