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Abstract

Background: Blood tests used to identify patients at increased risk of undiagnosed cancer are commonly used in isolation,
primarily by monitoring whether results fall outside the normal range. Some prediction models incorporate changes over
repeated blood tests (or trends) to improve individualized cancer risk identification, as relevant trends may be confined within
the normal range.

Objective: Our aim was to critically appraise existing diagnostic prediction models incorporating blood test trends for the risk
of cancer.

Methods: MEDLINE and EMBASE were searched until April 3, 2025 for diagnostic prediction model studies using blood
test trends for cancer risk. Screening was performed by 4 reviewers. Data extraction for each article was performed by 2
reviewers independently. To critically appraise models, we narratively synthesized studies, including model building and
validation strategies, model reporting, and the added value of blood test trends. We also reviewed the performance measures
of each model, including discrimination and calibration. We performed a random-effects meta-analysis of the c-statistic for a
trends-based prediction model if there were at least 3 studies validating the model. The risk of bias was assessed using the
PROBAST (prediction model risk of bias assessment tool).

Results: We included 16 articles, with a total of 7 models developed and 14 external validation studies. In the 7 models
derived, full blood count (FBC) trends were most commonly used (86%, n=7 models). Cancers modeled were colorectal (43%,
n=3), gastro-intestinal (29%, n=2), nonsmall cell lung (14%, n=1), and pancreatic (14%, n=1). In total, 2 models used statistical
logistic regression, 2 used joint modeling, and 1 each used XGBoost, decision trees, and random forests. The number of blood
test trends included in the models ranged from 1 to 26. A total of 2 of 4 models were reported with the full set of coefficients
needed to predict risk, with the remaining excluding at least one coefficient from their article or were not publicly accessible.
The c-statistic ranged 0.69-0.87 among validation studies. The ColonFlag model using trends in the FBC was commonly
externally validated, with a pooled c-statistic=0.81 (95% CI 0.77-0.85; n=4 studies) for 6-month colorectal cancer risk. Models
were often inadequately tested, with only one external validation study assessing model calibration. All 16 studies scored a low
risk of bias regarding predictor and outcome details. All but one study scored a high risk of bias in the analysis domain, with
most studies often removing patients with missing data from analysis or not adjusting the derived model for overfitting.

Conclusions: Our review highlights that blood test trends may inform further investigation for cancer. However, models were
not available for most cancer sites, were rarely externally validated, and rarely assessed calibration when they were externally
validated.
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Introduction

Methods

Cancer incidence trends are projected to increase globally:
18 million new cases diagnosed in 2020 versus 28 million
projected in 2040 [1]. The likelihood of survival improves
by cancer detection at earlier stages [2-7]. Earlier detection
is crucial to improve patient outcomes and reduce cancer-
related mortality [8]. Screening programs may contribute to
early detection but have been implemented for a minority of
countries and cancers [9]. Risk prediction models for cancer
could improve early detection rates. These models combine
patient data, such as patient demographics, medical history, or
cancer symptoms, to identify patients with an increased risk
of undiagnosed cancer.

Blood tests commonly performed in clinical practice,
including full blood count (FBC) and liver function tests, are
often included in cancer risk prediction models, as they have
an important role in risk-stratifying symptomatic patients
for cancer investigation [10,11]. Blood tests are commonly
requested by clinicians, with rates of testing increasing yearly.
Despite panels of blood tests being taken together, blood tests
are almost entirely interpreted in isolation in current clinical
guidance [11,12]. In the United Kingdom, the National
Institute for Health and Care Excellence (NICE) suspected
cancer guidelines recommend referral for urgent investiga-
tion if low albumin, low hemoglobin, raised platelets, raised
bilirubin, raised calcium, or raised inflammatory markers are
observed, as these increase risk of cancer [11]. Monitoring
temporal trends (ie, changes over time) in repeated blood
tests may improve risk stratification, by incorporating an
individual’s trajectory from which to identify change. For
example, declining hemoglobin confined within the normal
range would be a relevant cancer-related trend, but missed
in practice as the results appear normal. Our recent system-
atic review on the association between blood test trends
and cancer diagnosis identified many trends that have the
potential to improve cancer risk stratification [13]. However,
the potential benefits and challenges and methodological
considerations of incorporating combinations of trends into
cancer risk prediction models remain unrealized.

Recent methodological advancements in both traditional
statistical and machine-learning methods allow for the
development of dynamic prediction models, which incorpo-
rate repeated measures data for clinical risk prediction and
may hold greater potential to rule-in and rule-out referral
for cancer investigation. We aimed to conduct a systematic
review to critically appraise diagnostic clinical prediction
models using trends in blood tests commonly used in primary
care for the risk of undiagnosed cancer.

https://cancer . jmir.org/2025/1/e70275

Overview

We followed the PRISMA (Preferred Reporting Items for
Systematic review and Meta-Analysis) guidelines (Check-
list 1) for reporting the findings of this review [14]. Eth-
ical approval was not required, as there were no direct
patient investigations in this study and only published
articles were systematically reviewed. The review protocol
was registered with the International PROSPERO (Prospec-
tive Register of Systematic Reviews) database on July 25,
2022 (CRD42022348907). There were no deviations to the
protocol.

Participants

We included studies of participants aged 18 years or
older reporting prediction models incorporating trends in
blood tests commonly available in primary care and cancer
diagnosis in any clinical setting. We excluded blood tests
taken after cancer diagnosis, such as to predict prognosis or
monitor treatment.

Outcome

The main outcome was a first diagnosis of cancer across all
cancer sites, including composite cancer sub-groupings and
all cancers combined. Cancer diagnosis was defined as per the
individual studies, such as confirmed cancer via laboratory
tests/radiology in clinical/prospective studies or the use of
ICD10 (International Statistical Classification of Diseases
and Related Health Problems 10th Revision) codes [15] in
studies of eHealth records.

Search Strategy

We worked with our review specialist (NR) to derive
a comprehensive search strategy. The MEDLINE (OVID)
(1946-present) and EMBASE (OVID) (1974-present)
databases were searched from inception to April 3, 2025
to identify articles that report on the association between
trends in blood tests commonly available in clinical prac-
tice and a cancer diagnosis. The initial search was conduc-
ted in June 2022, with a full update in February and May
2023 and April 2025. Search terms included MeSH head-
ings and title, abstract, and author keywords for blood tests,
cancer diagnosis, and prediction or risk. Cancer-related terms
included “tumor” and “cancer”. However, some cancers are
not usually paired with these terms, such as “leukaemia” or
“lymphoma”, so it was important to include such cancer types
explicitly to ensure they were captured. No language or other
limits were applied to the search. The full search strategy for
each database is provided in Table S1 (MEDLINE) and Table
S2 (EMBASE) in Multimedia Appendix 1. In the eligible
studies, we actively searched through each article’s reference
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list to find eligible studies that were not identified by the
search strategy.

Study Selection

All references initially underwent de-duplication in Endnote
20 [16] (by NR). Abstract and title screening was performed
in Endnote 20 and Rayyan [17] (by PSV, KKC, CFS,
and XY). The retrieved articles were initially split among
the reviewers for screening, with a sample of 1000 from
each of the three reviewers (KKC, CFS, and XY) inde-
pendently screened by a second reviewer (PSV) to assess
agreement, with discrepancies discussed until an agreement
was reached. The full-text screening was subsequently
performed independently by two reviewers (by PSV and SZ)
to identify eligible articles for data extraction and analysis,
with discrepancies discussed until agreement was reached.
We included any in-human primary research article reporting

Table 1. Blood tests included in this review.

Virdee et al

the development or validation of a diagnostic clinical risk
prediction model using a prediagnostic trend over repeat
measurements of at least one blood test parameter (Table
1) for subsequent diagnosis of cancer. A prediction model
was defined as any multivariable model designed to predict
the presence of undiagnosed cancer (outcome), where at least
one predictor in the model was a blood test trend. A model
was considered to include “trend” if it included temporal
changes in the quantitative blood test result over repeatedly
measured tests per patient as a predictor. The blood tests in
Table 1 are nonspecific (ie, not cancer-specific) blood tests
that are commonly available in primary care settings. Recent
evidence highlighted trends in many of these common tests
as risk factors for cancer diagnosis [13]. Using these blood
tests provides an opportunity to use commonly available data
to support cancer detection.

Blood test Blood level

Full blood count

Red blood cell count, hemoglobin, hematocrit, mean cell volume, mean cell hemoglobin, mean cell

hemoglobin concentration, red blood cell distribution width, platelet count, mean platelet volume, white
blood cell count, basophil count, eosinophil count, lymphocyte count, monocyte count, neutrophil count,
basophil %, eosinophil %, lymphocyte %, monocyte %, neutrophil %

Liver function tests
Renal function

Inflammatory markers

Other tests
ing hormone

Sodium, potassium, creatinine, urea

Alanine aminotransaminase, albumin, alkaline phosphatase, aspartate transaminase, bilirubin

C-reactive protein, erythrocyte sedimentation rate, plasma viscosity
Amylase, HbA |2, calcium, calcium adjusted, total protein, blood glucose, fasting glucose, thyroid stimulat-

2HbA |.: hemoglobin Alc.

We excluded abstracts and conference proceedings, as they
produce incomplete data for a thorough review. Studies
using a cross-sectional design were excluded, as the data
reflects a “snapshot” at a certain time so cannot assess
risk over time. Clinical trials of treatment intervention were
excluded to reduce the influence of treatments on blood test
data. Existing systematic reviews, correspondence, and case
studies pertaining to<5 individuals were excluded. Non-Eng-
lish full-texts without English versions available or nontrans-
latable were excluded.

Data Extraction

Data was extracted using an extraction form designed in
Microsoft Excel and piloted on 3 randomly selected eligi-
ble articles. Data items included study design and popula-
tion, blood test trends studied, analytic methods, cancer site,
and predictive performance measures. Data extraction from
each eligible article was performed by 2 reviewers independ-
ently (PSV, KKC, CFS, XY, and SZ), with disagreements
discussed until agreement was reached.

Data Analysis and Synthesis

Quantitative data were summarized using means with SD
for continuous data and counts with proportions for categori-
cal data. We narratively described and critically appraised
prediction models incorporating prediagnostic blood test
trend. We performed a random-effects meta-analysis of the
c-statistic (or area under the curve) for prediction models

https://cancer.jmir.org/2025/1/e70275

externally validated by at least 3 studies. The T? statistic

was used to describe heterogeneity and I? statistic to assess
the proportion of heterogeneity explained by between-study
differences. We also conducted a post hoc analysis, repeating
the meta-analysis by including only studies using primary
care data and again using only other studies, to assess if
findings differed between underlying populations of care.
Analyses were performed in Stata/SE 17.0.

Risk of Bias Assessment

Risk of bias in each study was assessed using the Cochrane
Prediction model Risk Of Bias Assessment Tool (PROBAST)
[18]. Each study was assessed by two reviewers independ-
ently (PSV, KKC, CFS, XY, and SZ), with disagreements
discussed until agreement was reached. Articles coauthored
by a reviewer were assessed by other reviewers.

Results

Overall Summary

In total, 99,545 references were identified, of which
24392 were unique after deduplication (Figure 1). A
total of 16 studies met the eligibility criteria and were
included in the review [19-34]. A total of 7 blood test
trend-based prediction models were developed in total
among 5 studies [23,27,28,30,31] and the remaining 11
studies [19-22,24-26,29,32-34] externally validated existing
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prediction models. In total, there were 14 external validations

of 2 models (ColonFlag by Kinar et al [27] and ENDPAC Sharma et al [30]).

Figure 1. PRISMA (preferred reporting items for systematic review and meta-analysis) diagram.
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Description of Studies

Study Design

A description of each study is provided in Table S3 in
Multimedia Appendix 1. Of the 16 studies, a case-con-
trol design was used by 19% (n=3) [23,25,29] and cohort
design by 81% (n=13) [19-2224,26-28,30-34]. In addition,
25% (n=4) [19,20,22,24] used prospectively-collected data
and 75% (n=12) [21,23,25-34] used retrospective data.
Furthermore, 19% (n=3) [19,20,28] collected data at clinical
centers, 75% (n=12) [21-23,25-27,29-34] used eHealth record
databases, and 6% (n=1) [24] used both. All studies used

https://cancer.jmir.org/2025/1/e70275

opportunistic tests (ie, performed for any reason exclud-
ing screening for cancer, such as to monitor symptoms or
comorbidity).

Participants

The mean number of participants recruited was 23,896 among
prospective studies and 502,730 among retrospective studies,
ranging from 617 to 2,914,589 participants over all the
studies. The 16 articles spanned 4 different countries: the
United States of America (44%, n=7) [23,25,28-30,33,34],
the United Kingdom (25%, n=4) [19-21,31], Israel (25%,
n=4) [22,26,27,32], and Canada (6%, n=1) [24]. The period
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of recruitment ranged from 1996 to 2020 in all studies.
There were 38% (n=6) [21,26-28,31,32] studies conducted
in primary care, 12% (n=2) [19,20] in secondary care, and
31% (n=5) in other settings: community-based insured adults
(n=1) [25], endoscopy unit (n=1) [24], and insured individu-
als (n=3) [23,29,33]. It was unclear in 18% (n=3) [22,30,34].
One study [24] (6%) was limited to asymptomatic patients,
including only patients without symptoms, and the remaining
94% (n=15) [19-23,25-34] included participants regardless
of whether they experienced symptoms or not. A total of
6 studies [20,21,24,26,28,31] reported age, with a mean
age 58.1 years (SD 5.2) among them. A total of 7 studies
[21,25,27-29,31,32] reported sex, with mean 54.9% (SD 3.9)
of females among them.

Virdee et al

Model Building Strategy

Characteristics of the 7 models are in Table 2. A total of
4 models (57%) were developed in the USA population
[23,28,30], 2 (29%) in United Kingdom [31], and 1 (14%)
in Israel [27]. A total of 3 models (43%) were developed for
risk of colorectal cancer [27,31], 2 (29%) for gastro-intestinal
cancer (defined by Read as cancer of the esophagus, stomach,
small intestine, colon, rectum, or anus) [28], 1 (14%) for
nonsmall cell lung cancer [23], and 1 (14%) for pancreatic
cancer [30]. A total of 6 models assessed cancer risk from the
time of the latest blood test included and it was unclear in one
study [23].

Table 2. Characteristics of 7 trend-based prediction models for cancer diagnosis.

Model (name, Outcome risk Patient Blood level(s) Number of Predictors in the final
Article Country  if assigned) Outcome window setting trend cases/total model
Gould et al United MES Nonsmall Diagnosis Other — ALT?, creatinine,  3942/117669 Age, sex, education, race,
[23] States of cell lung insured blood glucose, marital status, smoking
America cancer individuals MCHCb, platelets, status, smoking pack
RDW¢, WBCH year, smoking years,
smoking intensity, days
since quitting, Hospitali-
zation due to COPD and
allied conditions,
Diagnosis of COPD and
allied conditions,
Hospitalization due to
Cancer, Diagnosis of
Cancer, ALT, Creatinine,
Glucose, MCHC,
Platelets, RDW, WBC
Kinar et al Israel ColonFlag Colorectal 3-6 months Primary care RBC®, 2437/466107 RBC, hemoglobin,
[27] cancer hemoglobin, hematocrit, MCV, MCH,
hematocrit, MCVf, MCHC, RDW, platelets,
MCHE, MCHC, MPV, WBC, basophil#,
RDW, platelets, basophil%, eosinophil#,
MPVP, WBC, eosinophil%,
basophil#, lymphocyte#, lymphocyte
basophil%, % , monocyte#, monocyte
eosinophil#, %, neutrophil#,
eosinophil%, neutrophil %, age, sex
lymphocyte#,
lymphocyte %,
monocyte#,
monocyte %,
neutrophil#,
neutrophil %
Read etal  United Logistic Gastrointest 6 months Primary care RBC, hemoglobin, 1025/148158 Age, sex, race, BMI,
[28] States of  model inal cancer hematocrit, MCV, RBC, hemoglobin,
America (esophagus, MCH, MCHC, hematocrit, MCV, MCH,
stomach, RDW, platelets, MCHC, RDW, platelets,
small MPV, WBC, MPV, WBC, basophil#,
intestine, basophil#, basophil%, eosinophil#,
colon, basophil%, eosinophil%,
rectum, or eosinophil#, lymphocyte#, lymphocyte
anus) eosinophil%, % , monocyte#, monocyte
lymphocyte#, %, neutrophil#,
lymphocyte %, neutrophil %, most recent
monocyte#, BMP (8 components)
monocyte %,
neutrophil#,

neutrophil %
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Model (name, Outcome risk Patient Blood level(s) Number of Predictors in the final
Article Country  if assigned) Outcome window setting trend cases/total model
Read etal  United Machine Gastrointest 6 months Primary care RBC, hemoglobin, 1025/148158 Age, sex, race, BMI,
[28] States of  learning inal cancer hematocrit, MCV, RBC, hemoglobin,
America  model (esophagus, MCH, MCHC, hematocrit, MCV, MCH,
stomach, RDW, platelets, MCHC, RDW, platelets,
small MPV, WBC, MPV, WBC, basophil#,
intestine, basophil#, basophil%, eosinophil#,
colon, basophil%, eosinophil%,
rectum, or eosinophil#, lymphocyte#, lymphocyte
anus) eosinophil%, % , monocyte#, monocyte
lymphocyte#, % , neutrophil#,
lymphocyte %, neutrophil %, most recent
monocyte#, BMP (8 components)
monocyte %,
neutrophil#,
neutrophil %
Sharmaet  United ENDPAC! Pancreatic 3 years Unclear Blood glucose 16/256 Change in weight, change
al [30] States of cancer in blood glucose
America category, age, change in
blood glucose
Virdee et United BLOODTRA Colorectal 2 years Primary care Hemoglobin, 677/246695  Age, hemoglobin trend,
al [31] Kingdom CCJ cancer MCV, platelets MCYV trend, platelets
Colorectal trend
(females)
Virdee United BLOOD- Colorectal 2 years Primary care Hemoglobin, 865/250716  Age, hemoglobin trend,
[31] Kingdom TRACC cancer MCV, platelets MCV trend, platelets
Colorectal trend
(males)

4ALT: alanine aminotransaminase.

PMCHC: mean cell hemoglobin concentration.

‘RDW: red blood cell distribution width.

dWBC: white blood cell count.

®RBC: red blood cell count.

fMCV: mean cell volume.

EMCH: mean cell hemoglobin.

"MPV: mean platelet volume.

IENDPAC: enriching new-onset diabetes for pancreatic cancer.
JBLOODTRACC: full blood count trends for colorectal cancer detection.

In total, 2 models were developed using multivariate joint
modeling [31], 2 using logistic regression [28,30], and 1 using
each of XGBoost [23], decision trees [27], and random forests
[28]. A total of 3 models (43%) were built by including
all candidate predictors [27,28], 2 (29%) included clinically
relevant predictors that were commonly available in practice
[31], 1 (14%) included statistically significant variables in
univariable analysis [30], and the model building process
was unclear for 1 (14%) model [23]. To address missing
blood test data, 2 (29%) models derived missing blood levels
from other available blood levels using known mathemati-
cal relationships (eg mean cell hemoglobin=hemoglobin/red
blood cell count) [31], 2 (29%) used imputation methods [28],
1 (14%) analyzed the blood test data as-is (without altering
missing data) [23], and 1 (14%) used other methods (linear
models to replace missing values using historical blood tests
or mean value across all blood tests if no historic blood tests
were present) [27]. Methods for handling missing blood test
data were not discussed in 1 (14%) study [30].

https://cancer.jmir.org/2025/1/e70275

Modeling Blood Test Trends

A total of 3 models (43%) assessed trends over repeated
quantitative blood test results; Kinar et al [27] used ensembles
of decision trees for the ColonFlag model, modeling changes
over tests measured at 3-6 months before diagnosis and 18
and 36 months before that for each patient in the ensemble
model, and Virdee et al [31] used multivariate joint modeling,
which uses mixed-effects modeling to account for differing
numbers of tests and the time between them in sporadically
available repeated measures data between patients, for both
BLOODTRACC models. One model (14%), by Sharma et
al[30], calculated the difference between tests and included
this as a single continuous variable in a logistic regression
model to determine risk. It was unclear how trends were
included in 3 (43%) models to predict risk [23,28].

The number of repeat blood tests used to define trend
varies between models. Read et al [28] calculated the change
in slope (reflecting the trend/trajectory) over at least 2
repeated tests sporadically measured over 3 years, Sharma et
al [30] calculated the difference between blood tests measured
at 18-3 months before new-onset diabetes and included this
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in their model, and Virdee et al[35] included the change in
slope across all available blood tests (median=3 per patient)
sporadically measured over 5 years to predict risk. The
number of repeated blood tests used to derive trends was
not reported for 3 models (43%) but the period of repeated
testing among them ranged between 18 months and 5 years
[23,27,30]. See Table S4 in Multimedia Appendix 1 for
further details.

A total of 6 models (86%) used combinations of blood
test trends and 1 model (14%) used trend in a single blood
test (plus with other patient data) to predict cancer risk.
The logistic model and random forests model by Read et
al [28] combined trends in 28 blood tests Kinar et al [27].
combined trends in 20 blood tests (that make up the FBC)
using decision trees, and Gould et al [23] combined trends in
7 blood tests using XGBoost. Virdee et al [35] combined 3
blood test trends (hemoglobin, mean corpuscular volume, and
platelets) using multivariate joint modeing.

Model Reporting

Total 3 (43%) models were reported using appropri-
ate reporting guidelines to report model findings (TRI-
POD [Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis] guidelines
[28,31,36]). For 3 (43%) models, justification for their choice

Virdee et al

of outcome risk window was provided [23,31]. In addition,
2 (29%) models were reported to be sufficiently powered,
having provided a sample size calculation to show the number
of patients and events needed to ensure reliable predictions
and minimize optimistic performance [31].

Read et al [28] did not report the coefficients from
their logistic model and Sharma et al [30] did not report
the intercept from their logistic model. The full risk equa-
tion needed to derive an individual’s risk of diagnosis was
only reported for 2 models [31]. The models developed
using XGBoost, decision trees, and random forests were
not reported, due to the nature of machine learning, and
a reference to publicly available models was not provided
[23,27,28].

Internal Validation

A total of 6 (86%) models underwent internal validation
and one (14%) (by Sharma [30]) did not (Table 3). The
internal validation sample was obtained using random data
splitting for 4 (57%) models [23,27,31] and cross-validation
for 2 (29%) models [23,28]. On average, there were 214,883
participants in the validation samples, ranging from 78,433
to 462,900. A total of 4 (57%) models were adjusted for
overestimated performance [27,28,31] and it was unclear for
2 (29%) models [23,28].

Table 3. Performance statistics from internal and external validations of the final models, which include trends and other patient data.

Outcome Overall performance Discrimination Calibration
Model name/ risk
Atrticle description window Method Result Method Result (95% CI) Method Result
Internal validation
Gould et al MES 3-6 months No AUC/C- 0.870 (0.856- Isotonic regression
[23] statistic 0.886)
Gould et al MES 6-9 months No AUC/C- 0.862 (0.845- No
[23] statistic 0.878)
Gouldetal MES 9-12 No AUC/C- 0.856 (0.840- No
[23] months statistic 0.872)
Kinar et al [27] ColonFlag 1 month No AUC/C- 0.84 No
statistic
Kinar et al [27] ColonFlag 3-6 months No AUC/C- 0.82 Hosmer- P=47
statistic Lemeshow test
Read et al [28] Logistic regression 6 months Brier score  0.008 AUC/C- 0.711 (0.691- No
statistic 0.731)
Read et al [28] Machine-learning 6 months Brier score  0.092 AUC/C- 0.713 (0.689- No
(random forest) statistic 0.737)
Virdee et al BLOODTRACC?* 2 years Brier score  0.0028 AUC/C- 0.763 (0.753- Calibration slope 1.05
[35] Colorectal statistic 0.775)
(females)
Virdee et al BLOODTRACC 2 years Brier score  0.0033 AUC/C- 0.751 (0.739- Calibration slope 1.06
[35] Colorectal (males) statistic 0.764)
External validation
Ayling et al ColonFlag Diagnosis  No No No
[19]
Ayling et al ColonFlag 6 months No No No
[20]
Birks et al [21] ColonFlag 3-6 months No AUC/C- 0.844 (0.839- No
statistic 0.849)
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Outcome Overall performance Discrimination Calibration
Model name/ risk
Atrticle description window Method Result Method Result (95% CI) Method Result
Birks et al [21] ColonFlag 6-12 No AUC/C- 0.813 (0.809- No
months statistic 0.818)
Birks et al [21] ColonFlag 12-24 No AUC/C- 0.791 (0.786- No
months statistic 0.796)
Birks et al [21] ColonFlag 18-24 No AUC/C- 0.776 (0.771- No
months statistic 0.781)
Birks et al [21] ColonFlag 24-36 No AUC/C- 0.751 (0.746- No
months statistic 0.756)
Goshen et al ColonFlag Diagnosis  No No No
[22]
Hilsden et al ColonFlag 1 year No No No
[24]
Hornbrook et ColonFlag 6 months No AUC/C- 0.80 (0.79-0.82) No
al [25] statistic
Kinar et al [27] ColonFlag 1 month No AUC/C- 0.84 (0.82-0.86) No
statistic
Kinar et al [27] ColonFlag 3-6 months No AUC/C- 0.81 (0.80-0.83) Hosmer- P<.001
statistic Lemeshow test
Kinar et al [26] ColonFlag 12-18 No No No
months
Schneider et al ColonFlag 6 months No AUC/C- 0.78 (0.77-0.78) No
[29] statistic
Virdee et al ColonFlag 2 years No AUC/C- 0.761 (0.744- No
[31](Females) statistic 0.768)
Virdee et al ColonFlag 2 years No AUC/C- 0.762 (0.749- No
[31] (Males) statistic 0.774)
Boursi et al ENDPACP 3 years No AUC/C- 0.69 No
[32] statistic
Chen et al [33] ENDPAC 3 years No AUC/C- 0.75 No
statistic
Khan et al [34] ENDPAC 4 years No AUC/C- 0.72 No
statistic
[30] Sharma et ENDPAC Diagnosis No No No

al [30]

4BLOODTRACC: Full blood count trends for colorectal cancer detection.

PENDPAC: enriching new-onset diabetes for pancreatic cancer.

Only 4 (57%) models assessed overall performance. Virdee
et al [31], derived Brier scores of 0.0028 (men) and 0.0033
(women) for 2-year risk of colorectal cancer and Read et al
[28] derived Brier scores of 0.008 (logistic regression) and
0.092 (random forests) for 6-month risk of GI cancer28.

A total of 6 (86%) models (100% of those internally
validated) assessed discrimination, each using the c-statis-
tic. Gould 2021 [23] and Kinar 2016 [27] reported c-statis-
tic=0.87 and 0.82 for 3-6-month risk of nonsmall cell lung
cancer in the United States of America and Israel based
on various blood test trends measured over 5 years com-
bined with other patient data and colorectal cancer based
on all FBC parameters over 3 years combined with other
patient data, respectively. Read 2023 [28] reported c-statis-
tic=0.711 (logistic regression) and 0.713 (random forests) for
6-month risk of GI cancer based on FBC trends combined
with other patient data. Virdee et al [31] reported c-statis-
tic=0.75 (men) and 0.76 (women) for 2-year risk of colorectal

https://cancer.jmir.org/2025/1/e70275

cancer following trends in hemoglobin, mean cell volume,
and platelets, together with age, measured over 5 years in UK
primary care patients.

A total of 4 (57%) models were assessed for calibration.
Gould 2021 [23] used isotonic regression to assess calibra-
tion, but did not report the corresponding results. Kinar 2016
[27] used the Hosmer-Lemeshow test and reported P=.47 for
3-6 month risk of colorectal cancer. Virdee et al [31] derived
calibration slopes of 1.06 (men) and 1.05 (women) for 2-year
risk of colorectal cancer and presented calibration plots.

External Validation

Fourteen external validation studies were performed in total
for 2 models (Table 3): the ColonFlag by [27] was externally
validated by 10 studies and the ENDPAC model by [30]
by 4 studies. There were on average 244,580 participants
included in the external validation studies, ranging from
532 to 2,225,249. Overall performance, discrimination, and

JMIR Cancer 2025 | vol. 11 1e70275 | p. 8
(page number not for citation purposes)


https://cancer.jmir.org/2025/1/e70275

JMIR CANCER

calibration are all essential assessments to assess external
validity of prediction models [37]. Overall performance of
the ColonFlag or ENDPAC model was not assessed during
external validation.

A total of 6 (29%) of the 14 external validations assessed
discrimination, with all using the c-statistic. Birks et al [21]
externally validated ColonFlag at multiple time intervals
between the most recent blood test and diagnosis in a UK
sample, reporting c-statistic=0.844 at 3-6 months, which
reduced to 0.751 at 23-36 months [21]. Kinar et al [27]
also externally validated the ColonFlag using UK data and
reported a similar c-statistic (0.81) at 3-6 months before
colorectal cancer diagnosis [27]. However, Kinar et al [27]
removed the red blood cell distribution width blood level
from the model and assessed predictive performance of the
resulting model. This was because the UK dataset did not
include red blood cell distribution width, but the removal of
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a predictor from the model consequently means the external
validation is incomplete.

A total of 4 studies with available data assessed <6-
month risk of colorectal from ColonFlag and were inclu-
ded in a random-effects meta-analysis [21,25,27,29]. The
pooled estimate indicated c-statistic=0.81 (95% CI 0.77-0.85)
(t3=0.0016), with 99.1% (I?) of the heterogeneity attributa-
ble to between-study differences (Figure 2). Our post hoc
meta-analyses including only primary care populations and
nonprimary care populations separately reduced heteroge-
neity, but this remained high (Figure S1 in Multimedia
Appendix 1).

Calibration was assessed by Kinar et al [27]2016 only,
using the Hosmer-Lemeshow test for the ColonFlag. They
reported weak calibration at 3-6 months in the UK dataset
(P<.001).

Figure 2. Forest plot of c-statistic for risk of colorectal cancer from ColonFlag external validations [21,25,27,29].

Outcome Number C-statistic
Article window Cases/Non-cases (95% ClI)
Birks 2017 3-6 months 5935/2478764 i * 0.84 (0.84, 0.85)
Hornbrook 2017 6 months 900/16195 -‘i— 0.80 (0.79, 0.82)
Kinar 2016 3-6 months 5061/20552 -:0— 0.81(0.80, 0.83)
Schneider 2020 6 months 6019/302702 - i 0.78 (0.77,0.78)

Overall (I-squared = 99.1%)

0.81(0.77, 0.85)

Added Value of Trend

Kinar et al [27] assessed which blood test trends contrib-
uted most to the c-statistic of their prediction model for 3-6
month risk of colorectal cancer. Their model included trend
in 20 FBC parameters, age, and sex. Red blood cell-related
parameters contributed the most to the c-statistic, with trend
in hemoglobin contributing the most (around 0.11) when
added to age and sex. White blood cell-related parameters
added the least to the c-statistic when combined with age and
sex, such as adding around 0.03 AUC with the inclusion of
monocyte count trend.

Read et al [28] used logistic regression to develop
prediction models for the 6-month risk of gastro-intestinal
cancer, including age, sex, BMI, blood test trends, and further
covariates. They compared the c-statistic of their final model
to one including blood tests measured at a single time point
(the last test prior to the prediction interval). They report a
higher c-statistic for their model including blood test trends
(0.711, 95% CI 0.691-0.731) compared with the model
including blood tests from a single time point (0.697, 95%
CI 0.679-0.715). As secondary analyses, they assessed the
c-statistic for one-, three-, and five-year risk, reporting higher
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c-statistics for models including blood test trends compared
to models including single blood tests for one- (0.705, 95%
CI 0.689-0.722 trend and 0.693, 95% CI 0.675-0.710 single)
and three-year (0.735, 95% CI 0.713-0.757 trend and 0.683,
95% CI 0.665-0.701 single) risk but a lower c-statistic for
their model including trends for five-year risk (0.672, 95% CI
0.653-0.691 trend and 0.703, 95% CI 0.686-0.720 single). No
other study reported the added benefit of blood test trend to
the prediction models.

Risk of Bias

Risk of bias for each domain is summarised in Figure 3
and per study in Table S5 in Multimedia Appendix 1. All
16 studies scored a low risk of bias in the predictors and
outcome domains. All but 3 studies in the participant domain
scored low risk of bias, with (Gould et al, Hornbrook et al,
and, Schneider et al [23,25,29]) scoring high risk of bias for
not including all eligible patients in their analyses. All but
one study scored a high risk of bias in the analysis domain,
commonly due to studies removing patients with missing data
from all their analyses, not adjusting the developed model for
under or overfitting, or not accounting for complexities in the
data, such as censoring.
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Figure 3. Summary of risk of bias scores, assessed using the prediction model risk of bias assessment tool.

Participation

Prognostic factor

Low High
13 3
16
16
15
10 15

Number of studies

Outcome
Analysis 1
0 5
Discussion
Principal Findings

This systematic review builds on our recent review on the
association between blood test trend and cancer diagnosis
[13] by highlighting the potential for risk stratification and
methodological considerations of incorporating combinations
of trends into cancer risk prediction models for use in
practice. Our review identified logistic regression (incorporat-
ing the difference between 2 blood tests as a single varia-
ble) and multivariate joint modeling as the most commonly
used modeling techniques. Models were often developed
using poor methods. For example, although all but one
model underwent internal validation during model develop-
ment, model performance was not adequately assessed, with
calibration often ignored and recalibration rarely performed
for overfitting [37-41]. Where calibration was assessed, the
Hosmer-Lemeshow test was sometimes used, which is known
to have limited power and poor interpretability [37]. Many
models were inadequately reported, with only one study
providing the full risk-equation needed to derive an individu-
al’s risk of diagnosis. Without the full risk equation being
available, models are unlikely to be independently externally
validated or easily embedded into practice. Although our
primary focus was to critically appraise trend-based predic-
tion models, it is important to also highlight caution in the
interpretation of performance measures from the models, as
these may be subject to publication bias. For example, a
prediction model with a poorer c-statistic is less likely to be
published.

The ColonFlag model was most commonly externally
validated, although this model is commercially developed
so not publicly available. This model uses trends in FBC
parameters to predict a monotonic score confined between
0-100, where higher scores reflect a higher likelihood of
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colorectal cancer diagnosis [27]. A pooled c-statistic of
0.81 from 4 studies indicates that trends in the FBC could
be generalizable to other clinical settings and geographical
locations, with good predictive ability to distinguish between
patients with and without colorectal cancer. Heterogeneity
was however high. This was anticipated due to the varia-
tion between studies included in the meta-analysis, such
as differing geographical settings, health care systems, and
eHealth records used. Therefore, caution should be given
in the interpretation of these results when making generali-
sations between different clinical settings. There were few
studies demonstrating the external validity of other models
including blood test trend. Predictive ability of models was
not assessed by cancer characteristics, such as by cancer
stage, in any study.

Comparison of Models

A total of 3 models were identified for colorectal cancer:
the ColonFlag and sex-specific BLOODTRACC models.
Both models include age and sex, with the ColonFlag also
including trend in all 20 FBC parameters and the BLOOD-
TRACC models including trend in only three FBC parameters
(hemoglobin, mean cell volume, and platelets). The Colon-
Flag uses changes over tests measured at 36 and 18 months
up to the current test, with all patients requiring a test at
each time point, whereas the BLOODTRACC models use
all available tests over a five-year period before the current
test and takes into consideration the timing of tests, as blood
tests are not performed routinely in the United Kingdom.
Although the ColonFlag was developed for 3-6 month risk
in Israeli primary care, external validation studies of this
model for two-year risk found it performed similarly to the
BLOODTRACC models for 2-year risk in UK primary care.
This suggests that the 17 additional blood test trends in the
ColonFlag may not add further diagnostic benefit to the
combination of hemoglobin, mean corpuscular volume, and
platelet trends for colorectal cancer. This may suggest that the
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underlying methodology used to develop the models (decision
trees for the ColonFlag and joint modeling for the BLOOD-
TRACC models) does not affect discriminative performance,
but this would need assessing on the same patient dataset
and multiple study designs employed to reduce heterogene-
ity. This assessment was performed in the BLOODTRACC
model derivation study, where both models derived compa-
rable c-statistics in the same cohort, both overall and in
subgroups of age, by number of blood tests used to derive
trends, and by longitudinal period used to derive trends [31].

Read et al[28] developed two models for gastro-intesti-
nal cancer, one using random forests and one using logistic
regression. Both models were designed to be as similar as
possible, such as using the same study sample, outcome
window, longitudinal period to derive trends, and similar
covariates, with the methodological approach used to derive
the methods being the biggest difference. Both models
achieved an AUC of 0.71, suggesting that the underly-
ing methodological approach may not affect discriminative
performance, although the logistic model had better overall
performance (lower Brier score). Neither model was assessed
for calibration so further testing is required.

The remaining 2 models were for lung and pancreatic
cancer. These were not compared with other models, as no
further models for lung or pancreatic cancer were identified.

Strengths and Limitations

To our knowledge, this is the first review of cancer
prediction models that incorporate blood test trend. We
performed a comprehensive search, developed with an
information specialist, including full-length articles retrieved
from MEDLINE and EMBASE. It is possible that additional
relevant studies may be found exclusively in other databa-
ses and were missed by our review. However, it is likely
that most relevant manuscripts were found, as MEDLINE
and EMBASE had 97.5% coverage of articles in previ-
ous systematic reviews and we conducted citation search-
ing of all included manuscripts [42]. Our review identified
prediction models for only four cancer types, with two
externally validated (colorectal and pancreatic). We were
therefore unable to draw conclusions regarding external
validity for many cancer types. One further limitation is that
we were unable to draw conclusions regarding publication
bias, assessing whether prediction models were more likely to
be published if they had good predictive performance. Only
five models had c-statistics with corresponding confidence
intervals at internal validation, making it difficult to assess
symmetry in a funnel plot and deduce any publication bias.

Comparison With Previous Work

To date, prediction models for cancer risk are most commonly
developed using single blood test results (plus other predic-
tors). These include the QCancer models for the 2-year risk
of cancer [43,44] and unexpected weight loss models for the
6-month risk of cancer [45], which combine patient demo-
graphics, symptoms, and single blood test values for cancer
risk in symptomatic patients in UK primary care practices.
Collectively, these models have c-statistics ranging 0.79-0.92,
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comparable to 0.71-0.87 reported for the models included
in this review, which often included only blood test trends,
age, and sex and different outcome risk windows. Existing
systematic reviews have identified prediction models for
individual cancer sites, including lung, breast, colorectal, and
prostate, but the focus of these reviews was not on the role
of blood test trend [46-49]. Lung cancer prediction models in
those reviews often included patient demographics, pneumo-
nia, exposure to smoking, and single blood tests for one-year
risk, with c-statistic ranging 0.66-0.91. In this review, Gould
et al [23] reported 0.87 for six-month risk of lung cancer
using similar predictors combined with trend in seven blood
tests. Colorectal cancer prediction models in those reviews
often included patient demographics and single blood tests,
with c-statistic ranging from 0.82-0.84 for 6-month risk and
0.72-0.92 for 2-year risk. In this review, Kinar et al [27]
and Birks et al [21] reported 0.82-0.84 for 6-month risk
and Virdee et al [31] reported 0.75-0.76 for 2-year risk of
colorectal cancer using trend in 20 and three blood tests,
respectively, age, and sex. Although those reviews identified
prediction models using single blood test results for breast
and prostate cancer [46,49], we found no prediction mod-
els incorporating trends for these cancers in this systematic
review.

Clinical and Research Implications

Thorough testing of prediction models is required before
clinical guidelines for cancer investigation can incorporate
blood test trends. This includes assessment for the predic-
tive ability of blood test trend compared to single blood
tests and symptoms and the potential for early detection of
cancer. For example, in the cancer field, the NICE guidelines
recommend primary care to refer for cancer investigation if
a patient’s risk is above 3%, which is often used to sup-
port referral of symptomatic patients, whose risk is likely
higher than nonsymptomatic patients. For models derived for
more general populations, such as the trend-based models
included in this review, there is no clear cut-off. To assess
the potential added benefit of trend, studies would need to
compare the diagnostic accuracy of trend-based and static/
single-test models. No study in our review performed such
comparisons, so this potential remains unknown. Patient-
and clinician-acceptability of blood test trend approaches
for cancer detection also requires investigation to optimize
uptake of such models in practice. As some clinicians order
blood tests more than others, methods to standardize blood
testing across practices may be warranted and could reduce
practice-level variability through clinical guidelines on repeat
blood testing. This additional testing may add burden to
health care, but the balance of patient benefit and outcomes
to health care burden would need investigation. In terms of
reporting, prediction models were often not reported in full,
which is required for implementation into clinical systems
and use in practice. Future models should follow appropriate
reporting guidelines to ensure they are appropriately reported,
such as the TRIPOD [36] or TRIPOD-AI [50] guidelines.

Sub-optimal methods to analyse trends were often
identified, such as logistic regression incorporating change
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between tests. Recent technological advancements have
allowed for dynamic models, which are designed for repeated
measures data by appropriately accounting for nonindepend-
ent data sporadically recorded in routine clinical practice
[51], to be incorporated into analysis software packages.
These include models such as landmarking and joint
modeling of longitudinal and time-to-event data [52-54].
Research is required to assess the implementation consider-
ations of different methodological techniques. For example,
the feasibility of incorporating computationally intensive
approaches, such as joint modeling, or approaches that
require larger datasets or are nontransparent, such as machine
learning. Our ongoing research aims to develop and vali-
date trend-based prediction models for cancer, with even-
tual integration of trend into risk stratification in clinical
practice [55]. Future prediction model studies should employ
appropriate validation metrics, as we found that most studies
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did not assess overall performance or calibration. Further
sub-optimal analysis methods commonly used included
removing patients with missing data from all their analyses,
not adjusting the developed model for under or overfitting, or
not accounting for complexities in the data, such as censoring.
Future models should consider such points to reduce bias.

Conclusion

We highlight the cancers for which there is a reported
prediction model incorporating changes in repeated blood
tests over time and the cancers and blood tests with no
published literature. We provide an overview of the predic-
tive performance of prediction models incorporating blood
test trends and highlight that further testing is needed for all
models identified. This review lays the foundation for further
research.

Acknowledgments

PSV and BDN are funded for this work by a Cancer Research UK Clinical Careers Committee Postdoctoral Fellowship
(RCCPDF\100005). The authors would also like to thank patient and public involvement representatives Alton Sutton, Bernard
Gudgin, Clara Martins de Barros, Emily Lam, Ian Blelloch, Julian Ashton, Margaret Ogden, Shannon Draisey, and Susan
Lynne for applying a patient perspective on the relevance of blood test trends for cancer detection.

Data Availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors’ Contributions

PSV,JLO, CB, RP,RH, BDN - Conceptualization
PSV, KKC, CFS, XY, NR — Data curation
PSV — Formal analysis

PSV, BDN - Funding acquisition

PSV — Methodology

PSV — Project administration

PSV — Resources

PSV — Software

KKC, CFS, XY — Validation

PSV - Visualization

PSV — Writing — original draft

All authors — Writing — review & editing

Conflicts of interest
None declared.

Multimedia Appendix 1
Final search strategy.

[DOCX File (Microsoft Word File), 60 KB-Multimedia Appendix 1]

Checklist 1

PRISMA checklist.
[PDEF File (Adobe File), 75 KB-Checklist 1]

References

1. Worldwide cancer incidence statistics. Cancer Research UK. 2023. URL: https://www .cancerresearchuk.org/health-
professional/cancer-statistics/worldwide-cancer/incidence#heading-One [Accessed 2025-05-24]

2. Cancer statistics for the UK - cancer screening and diagnosis. Cancer Research UK. 2023. URL: https://www.
cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk#heading-Four [Accessed 2025-05-24]

3. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. Jan 2022;72(1):7-33. [doi: 10.3322/

caac.21708] [Medline: 35020204]

https://cancer.jmir.org/2025/1/e70275

JMIR Cancer 2025 | vol. 11 170275 1 p. 12
(page number not for citation purposes)


https://jmir.org/api/download?alt_name=cancer_v11i1e70275_app1.docx
https://jmir.org/api/download?alt_name=cancer_v11i1e70275_app1.docx
https://jmir.org/api/download?alt_name=cancer_v11i1e70275_app2.pdf
https://jmir.org/api/download?alt_name=cancer_v11i1e70275_app2.pdf
https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk#heading-Four
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk#heading-Four
https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21708
http://www.ncbi.nlm.nih.gov/pubmed/35020204
https://cancer.jmir.org/2025/1/e70275

JMIR CANCER Virdee et al

4.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Survival for lung cancer. Cancer Research UK. 2023. URL: https://www .cancerresearchuk.org/about-cancer/lung-cancer/
survival [Accessed 2025-05-24]

Survival for bowel cancer. Cancer Research UK. 2023. URL: https://www.cancerresearchuk.org/about-cancer/bowel-
cancer/survival [Accessed 2025-05-24]

Survival for breast cancer. Cancer Research UK. 2023. URL: https://www.cancerresearchuk.org/about-cancer/breast-
cancer/survival [Accessed 2025-05-24]

Survival of prostate cancer. Cancer Research UK. 2023. URL: https://www.cancerresearchuk.org/about-cancer/prostate-
cancer/survival [Accessed 2025-05-24]

Crosby D, Bhatia S, Brindle KM, et al. Early detection of cancer. Science. Mar 18, 2022;375(6586):eaay9040. [doi: 10.
1126/science.aay9040] [Medline: 35298272]

What is cancer screening. Cancer Research UK. 2022. URL: https://www .cancerresearchuk.org/about-cancer/cancer-
symptoms/spot-cancer-early/screening/what-is-cancer-screening#screening20 [Accessed 2025-05-24]

Rubin GP, Saunders CL, Abel GA, et al. Impact of investigations in general practice on timeliness of referral for patients
subsequently diagnosed with cancer: analysis of national primary care audit data. Br J Cancer. Feb 17,
2015;112(4):676-687. [doi: 10.1038/bjc.2014.634] [Medline: 25602963 ]

Watson J, Mounce L, Bailey SE, et al. Blood markers for cancer. BMJ. Oct 14, 2019;367:15774. [doi: 10.1136/bmj.
15774] [Medline: 31611235]

Suspected cancer: recognition and referral (NG12). NICE. 2015. URL: https://www .nice.org.uk/guidance/ng12
[Accessed 2025-05-24]

Virdee PS, Collins KK, Friedemann Smith C, et al. The association between blood test trends and undiagnosed cancer: a
systematic review and critical appraisal. Cancers (Basel). Apr 26, 2024;16(9):1692. [doi: 10.3390/cancers16091692]
[Medline: 38730644]

Moher D, Liberati A, Tetzlaff J, PRISMA Group, et al. Preferred reporting items for systematic reviews and meta-
analyses: the PRISMA statement. PLoS Med. Jul 21, 2009;6(7):¢1000097. [doi: 10.1371/journal.pmed.1000097]
[Medline: 19621072]

International statistical classification of diseases and related health problems 10th revision (ICD-10). World Health
Organisation. 2019. URL: https://icd.who.int/browse10/2019/en [Accessed 2025-05-24]

EndNote 20. EndNote. 2023. URL: https://endnote.com [Accessed 2025-05-24]

Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev. Dec 5,
2016;5(1):210. [doi: 10.1186/s13643-016-0384-4] [Medline: 27919275]

Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction
model studies. Ann Intern Med. Jan 1, 2019;170(1):51-58. [doi: 10.7326/M18-1376] [Medline: 30596875]

Ayling RM, Lewis SJ, Cotter F. Potential roles of artificial intelligence learning and faecal immunochemical testing for
prioritisation of colonoscopy in anaemia. Br J Haematol. Apr 2019;185(2):311-316. [doi: 10.1111/bjh.15776] [Medline:
30714125]

Ayling RM, Wong A, Cotter F. Use of ColonFlag score for prioritisation of endoscopy in colorectal cancer. BMJ Open
Gastroenterol. Jun 2021;8(1):e000639. [doi: 10.1136/bmjgast-2021-000639] [Medline: 34083226]

Birks J, Bankhead C, Holt TA, et al. Evaluation of a prediction model for colorectal cancer: retrospective analysis of 2.5
million patient records. Cancer Med. Oct 2017;6(10):2453-2460. [doi: 10.1002/cam4.1183] [Medline: 28941187]
Goshen R, Choman E, Ran A, et al. Computer-assisted flagging of individuals at high risk of colorectal cancer in a large
health maintenance organization using the ColonFlag test. JCO Clin Cancer Inform. Dec 2018;2:1-8. [doi: 10.1200/CCI.
17.00130] [Medline: 30652563]

Gould MK, Huang BZ, Tammemagi MC, et al. Machine learning for early lung cancer identification using routine
clinical and laboratory data. Am J Respir Crit Care Med. Aug 15, 2021;204(4):445-453. [doi: 10.1164/rccm.202007-
27910C]

Hilsden RJ, Heitman SJ, Mizrahi B, et al. Prediction of findings at screening colonoscopy using a machine learning
algorithm based on complete blood counts (ColonFlag). PLoS ONE. 2018;13(11):e0207848. [doi: 10.1371/journal.pone.
0207848]

Hornbrook MC, Goshen R, Choman E, et al. Early colorectal cancer detected by machine learning model using gender,
age, and complete blood count data. Dig Dis Sci. Oct 2017;62(10):2719-2727. [doi: 10.1007/s10620-017-4722-8]
[Medline: 28836087]

Kinar Y, Akiva P, Choman E, et al. Performance analysis of a machine learning flagging system used to identify a group
of individuals at a high risk for colorectal cancer. PLoS One. 2017;12(2):e0171759. [doi: 10.1371/journal.pone.0171759]
[Medline: 28182647]

https://cancer.jmir.org/2025/1/e70275 JMIR Cancer 2025 | vol. 11 1e70275 | p. 13

(page number not for citation purposes)


https://www.cancerresearchuk.org/about-cancer/lung-cancer/survival
https://www.cancerresearchuk.org/about-cancer/lung-cancer/survival
https://www.cancerresearchuk.org/about-cancer/bowel-cancer/survival
https://www.cancerresearchuk.org/about-cancer/bowel-cancer/survival
https://www.cancerresearchuk.org/about-cancer/breast-cancer/survival
https://www.cancerresearchuk.org/about-cancer/breast-cancer/survival
https://www.cancerresearchuk.org/about-cancer/prostate-cancer/survival
https://www.cancerresearchuk.org/about-cancer/prostate-cancer/survival
https://doi.org/10.1126/science.aay9040
https://doi.org/10.1126/science.aay9040
http://www.ncbi.nlm.nih.gov/pubmed/35298272
https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/spot-cancer-early/screening/what-is-cancer-screening#screening20
https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/spot-cancer-early/screening/what-is-cancer-screening#screening20
https://doi.org/10.1038/bjc.2014.634
http://www.ncbi.nlm.nih.gov/pubmed/25602963
https://doi.org/10.1136/bmj.l5774
https://doi.org/10.1136/bmj.l5774
http://www.ncbi.nlm.nih.gov/pubmed/31611235
https://www.nice.org.uk/guidance/ng12
https://doi.org/10.3390/cancers16091692
http://www.ncbi.nlm.nih.gov/pubmed/38730644
https://doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
https://icd.who.int/browse10/2019/en
https://endnote.com
https://doi.org/10.1186/s13643-016-0384-4
http://www.ncbi.nlm.nih.gov/pubmed/27919275
https://doi.org/10.7326/M18-1376
http://www.ncbi.nlm.nih.gov/pubmed/30596875
https://doi.org/10.1111/bjh.15776
http://www.ncbi.nlm.nih.gov/pubmed/30714125
https://doi.org/10.1136/bmjgast-2021-000639
http://www.ncbi.nlm.nih.gov/pubmed/34083226
https://doi.org/10.1002/cam4.1183
http://www.ncbi.nlm.nih.gov/pubmed/28941187
https://doi.org/10.1200/CCI.17.00130
https://doi.org/10.1200/CCI.17.00130
http://www.ncbi.nlm.nih.gov/pubmed/30652563
https://doi.org/10.1164/rccm.202007-2791OC
https://doi.org/10.1164/rccm.202007-2791OC
https://doi.org/10.1371/journal.pone.0207848
https://doi.org/10.1371/journal.pone.0207848
https://doi.org/10.1007/s10620-017-4722-8
http://www.ncbi.nlm.nih.gov/pubmed/28836087
https://doi.org/10.1371/journal.pone.0171759
http://www.ncbi.nlm.nih.gov/pubmed/28182647
https://cancer.jmir.org/2025/1/e70275

JMIR CANCER Virdee et al

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Kinar Y, Kalkstein N, Akiva P, et al. Development and validation of a predictive model for detection of colorectal cancer
in primary care by analysis of complete blood counts: a binational retrospective study.J Am Med Inform Assoc. Sep
2016;23(5):879-890. [doi: 10.1093/jamia/ocv195] [Medline: 26911814

Read AJ, Zhou W, Saini SD, et al. Prediction of gastrointestinal tract cancers using longitudinal electronic health record
data. Cancers (Basel). Feb 22, 2023;15(5):1399. [doi: 10.3390/cancers15051399] [Medline: 36900192]

Schneider JL, Layefsky E, Udaltsova N, et al. Validation of an algorithm to identify patients at risk for colorectal cancer
based on laboratory test and demographic data in diverse, community-based population. Clin Gastroenterol Hepatol. Nov
2020;18(12):2734-2741. [doi: 10.1016/j.cgh.2020.04.054]

Sharma A, Kandlakunta H, Nagpal SJS, et al. Model to determine risk of pancreatic cancer in patients with new-onset
diabetes. Gastroenterology. Sep 2018;155(3):730-739. [doi: 10.1053/j.gastr0.2018.05.023] [Medline: 29775599]

Virdee PS, Patnick J, Watkinson P, et al. Full blood count trends for colorectal cancer detection in primary care:
development and validation of a dynamic prediction model. Cancers (Basel). Sep 29, 2022;14(19):4779. [doi: 10.3390/
cancers14194779] [Medline: 36230702]

Boursi B, Patalon T, Webb M, et al. Validation of the enriching new-onset diabetes for pancreatic cancer model: a
retrospective cohort study using real-world data. Pancreas. Feb 1, 2022;51(2):196-199. [doi: 10.1097/MPA.
0000000000002000] [Medline: 35404897]

Chen W, Zhou B, Luong TQ, et al. Prediction of pancreatic cancer in patients with new onset hyperglycemia: a modified
ENDPAC model. Pancreatology. Nov 2024;24(7):1115-1122. [doi: 10.1016/j.pan.2024.09.015] [Medline: 39353843]
Khan S, Safarudin RF, Kupec JT. Validation of the ENDPAC model: Identifying new-onset diabetics at risk of
pancreatic cancer. Pancreatology. Apr 2021;21(3):550-555. [doi: 10.1016/j.pan.2021.02.001] [Medline: 33583686]
Virdee PS, Patnick J, Watkinson P, et al. Trends in the full blood count blood test and colorectal cancer detection: a
longitudinal, case-control study of UK primary care patient data. NIHR Open Res. 2022;2(32):32. [doi: 10.3310/
nihropenres.13266.2] [Medline: 37056715]

Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. Jan 7, 2015;350:27594. [doi: 10.1136/bmj.g7594]
[Medline: 25569120]

Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for
traditional and novel measures. Epidemiology. Jan 2010;21(1):128-138. [doi: 10.1097/EDE.Ob013e3181c30fb2]
[Medline: 20010215]

Archer L, Snell KIE, Ensor J, et al. Minimum sample size for external validation of a clinical prediction model with a
continuous outcome. Stat Med. Jan 15, 2021;40(1):133-146. [doi: 10.1002/sim.8766] [Medline: 33150684]

Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction
model with a time-to-event outcome. Stat Med. Mar 30, 2022;41(7):1280-1295. [doi: 10.1002/sim.9275] [Medline:
34915593]

Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model
with a binary outcome. Stat Med. Aug 30, 2021;40(19):4230-4251. [doi: 10.1002/sim.9025] [Medline: 34031906]

Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model.
BMIJ. Mar 18, 2020;368:m441. [doi: 10.1136/bmj.m441] [Medline: 32188600]

Bramer WM, Giustini D, Kramer BMR. Comparing the coverage, recall, and precision of searches for 120 systematic
reviews in Embase, MEDLINE, and Google Scholar: a prospective study. Syst Rev. Mar 1,2016;5:39. [doi: 10.1186/
s13643-016-0215-7] [Medline: 26932789]

Hippisley-Cox J, Coupland C. Symptoms and risk factors to identify women with suspected cancer in primary care:
derivation and validation of an algorithm. Br J Gen Pract. Jan 2013;63(606):e11-21. [doi: 10.3399/bjgp13X660733]
[Medline: 23336450]

Hippisley-Cox J, Coupland C. Symptoms and risk factors to identify men with suspected cancer in primary care:
derivation and validation of an algorithm. Br J Gen Pract. Jan 2013;63(606):e1-10. [doi: 10.3399/bjgp13X660724]
[Medline: 23336443]

Nicholson BD, Aveyard P, Koshiaris C, et al. Combining simple blood tests to identify primary care patients with
unexpected weight loss for cancer investigation: Clinical risk score development, internal validation, and net benefit
analysis. PLoS Med. Aug 2021;18(8):e1003728. [doi: 10.1371/journal.pmed.1003728] [Medline: 34464384]

Aladwani M, Lophatananon A, Ollier W, et al. Prediction models for prostate cancer to be used in the primary care
setting: a systematic review. BMJ Open. Jul 19, 2020;10(7):¢034661. [doi: 10.1136/bmjopen-2019-034661] [Medline:
32690501]

Toumazis I, Bastani M, Han SS, et al. Risk-Based lung cancer screening: a systematic review. Lung Cancer (Auckl). Sep
2020;147:154-186. [doi: 10.1016/j.lungcan.2020.07.007] [Medline: 32721652]

https://cancer.jmir.org/2025/1/e70275 JMIR Cancer 2025 | vol. 11 1e70275 | p. 14

(page number not for citation purposes)


https://doi.org/10.1093/jamia/ocv195
http://www.ncbi.nlm.nih.gov/pubmed/26911814
https://doi.org/10.3390/cancers15051399
http://www.ncbi.nlm.nih.gov/pubmed/36900192
https://doi.org/10.1016/j.cgh.2020.04.054
https://doi.org/10.1053/j.gastro.2018.05.023
http://www.ncbi.nlm.nih.gov/pubmed/29775599
https://doi.org/10.3390/cancers14194779
https://doi.org/10.3390/cancers14194779
http://www.ncbi.nlm.nih.gov/pubmed/36230702
https://doi.org/10.1097/MPA.0000000000002000
https://doi.org/10.1097/MPA.0000000000002000
http://www.ncbi.nlm.nih.gov/pubmed/35404897
https://doi.org/10.1016/j.pan.2024.09.015
http://www.ncbi.nlm.nih.gov/pubmed/39353843
https://doi.org/10.1016/j.pan.2021.02.001
http://www.ncbi.nlm.nih.gov/pubmed/33583686
https://doi.org/10.3310/nihropenres.13266.2
https://doi.org/10.3310/nihropenres.13266.2
http://www.ncbi.nlm.nih.gov/pubmed/37056715
https://doi.org/10.1136/bmj.g7594
http://www.ncbi.nlm.nih.gov/pubmed/25569120
https://doi.org/10.1097/EDE.0b013e3181c30fb2
http://www.ncbi.nlm.nih.gov/pubmed/20010215
https://doi.org/10.1002/sim.8766
http://www.ncbi.nlm.nih.gov/pubmed/33150684
https://doi.org/10.1002/sim.9275
http://www.ncbi.nlm.nih.gov/pubmed/34915593
https://doi.org/10.1002/sim.9025
http://www.ncbi.nlm.nih.gov/pubmed/34031906
https://doi.org/10.1136/bmj.m441
http://www.ncbi.nlm.nih.gov/pubmed/32188600
https://doi.org/10.1186/s13643-016-0215-7
https://doi.org/10.1186/s13643-016-0215-7
http://www.ncbi.nlm.nih.gov/pubmed/26932789
https://doi.org/10.3399/bjgp13X660733
http://www.ncbi.nlm.nih.gov/pubmed/23336450
https://doi.org/10.3399/bjgp13X660724
http://www.ncbi.nlm.nih.gov/pubmed/23336443
https://doi.org/10.1371/journal.pmed.1003728
http://www.ncbi.nlm.nih.gov/pubmed/34464384
https://doi.org/10.1136/bmjopen-2019-034661
http://www.ncbi.nlm.nih.gov/pubmed/32690501
https://doi.org/10.1016/j.lungcan.2020.07.007
http://www.ncbi.nlm.nih.gov/pubmed/32721652
https://cancer.jmir.org/2025/1/e70275

JMIR CANCER Virdee et al

48. Virdee PS, Marian IR, Mansouri A, et al. The full blood count blood test for colorectal cancer detection: a systematic
review, meta-analysis, and critical appraisal. Cancers (Basel). Aug 19, 2020;12(9):2348. [doi: 10.3390/cancers12092348]
[Medline: 32825191]

49. Zheng Y, LiJ, Wu Z, et al. Risk prediction models for breast cancer: a systematic review. BMJ Open. Jul
2022;12(7):2055398. [doi: 10.1136/bmjopen-2021-055398]

50. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction
models that use regression or machine learning methods. BMJ. Apr 16, 2024;385:e078378. [doi: 10.1136/bmj-2023-
078378] [Medline: 38626948]

51. Bull LM, Lunt M, Martin GP, et al. Harnessing repeated measurements of predictor variables for clinical risk prediction:
a review of existing methods. Diagn Progn Res. 2020;4:9. [doi: 10.1186/s41512-020-00078-z] [Medline: 32671229]

52. Lee C, Yoon J, Schaar M van der. Dynamic-DeepHit: a deep learning approach for dynamic survival analysis with
competing risks based on longitudinal data. IEEE Trans Biomed Eng. Jan 2020;67(1):122-133. [doi: 10.1109/TBME.
2019.2909027] [Medline: 30951460]

53. Paige E, Barrett J, Stevens D, et al. Landmark models for optimizing the use of repeated measurements of risk factors in
electronic health records to predict future disease risk. Am J Epidemiol. Jul 1,2018;187(7):1530-1538. [doi: 10.1093/aje/
kwy018] [Medline: 29584812]

54. Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting
abdominal aortic aneurysm growth and rupture. Biom J. Sep 2011;53(5):750-763. [doi: 10.1002/bimj.201100052]
[Medline: 21834127]

55. Virdee PS, Bankhead C, Koshiaris C, et al. Blood test trend for cancer detection (BLOTTED): protocol for an
observational and prediction model development study using English primary care electronic health record data. Diagn
Progn Res. Jan 10, 2023;7(1):1. [doi: 10.1186/541512-022-00138-6] [Medline: 36624489]

Abbreviations

ENDPAC: Enriching New-Onset Diabetes for Pancreatic Cancer

FBC: full blood count

ICD10: International Statistical Classification of Diseases and Related Health Problems 10th Revision
NICE: National Institute for Health and Care Excellence

PRISMA: Preferred Reporting Items for Systematic review and Meta-Analysis

PROBAST: prediction model risk of bias assessment tool

PROSPERO: Prospective Register of Systematic Reviews

TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis

Edited by Naomi Cahill; peer-reviewed by Lesley Smith, Victoria Moglia, Zhengting He; submitted 18.12.2024; final revised
version received 02.05.2025; accepted 05.05.2025; published 27.06.2025

Please cite as:

Virdee PS, Collins KK, Smith CF, Yang X, Zhu S, Roberts N, Oke JL, Bankhead C, Perera R, Hobbs FDR, Nicholson BD
Clinical Prediction Models Incorporating Blood Test Trend for Cancer Detection: Systematic Review, Meta-Analysis, and
Critical Appraisal

JMIR Cancer 2025;11:e70275

URL: hitps://cancer jmir.org/2025/1/e70275

doi: 10.2196/70275

© Pradeep S Virdee, Kiana K Collins, Claire Friedemann Smith, Xin Yang, Sufen Zhu, Nia Roberts, Jason L Oke,
Clare Bankhead, Rafael Perera, FD Richard Hobbs, Brian D Nicholson. Originally published in JMIR Cancer (https://
cancer.jmir.org), 27.06.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR Cancer, is properly cited. The complete bibliographic informa-
tion, a link to the original publication on https://cancer.jmir.org/, as well as this copyright and license information must be
included.

https://cancer.jmir.org/2025/1/e70275 JMIR Cancer 2025 | vol. 11 1e70275 | p. 15
(page number not for citation purposes)


https://doi.org/10.3390/cancers12092348
http://www.ncbi.nlm.nih.gov/pubmed/32825191
https://doi.org/10.1136/bmjopen-2021-055398
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2023-078378
http://www.ncbi.nlm.nih.gov/pubmed/38626948
https://doi.org/10.1186/s41512-020-00078-z
http://www.ncbi.nlm.nih.gov/pubmed/32671229
https://doi.org/10.1109/TBME.2019.2909027
https://doi.org/10.1109/TBME.2019.2909027
http://www.ncbi.nlm.nih.gov/pubmed/30951460
https://doi.org/10.1093/aje/kwy018
https://doi.org/10.1093/aje/kwy018
http://www.ncbi.nlm.nih.gov/pubmed/29584812
https://doi.org/10.1002/bimj.201100052
http://www.ncbi.nlm.nih.gov/pubmed/21834127
https://doi.org/10.1186/s41512-022-00138-6
http://www.ncbi.nlm.nih.gov/pubmed/36624489
https://cancer.jmir.org/2025/1/e70275
https://doi.org/10.2196/70275
https://cancer.jmir.org
https://cancer.jmir.org
https://creativecommons.org/licenses/by/4.0/
https://cancer.jmir.org/
https://cancer.jmir.org/2025/1/e70275

	Clinical Prediction Models Incorporating Blood Test Trend for Cancer Detection: Systematic Review, Meta-Analysis, and Critical Appraisal
	Introduction
	Methods
	Overview
	Participants
	Outcome
	Search Strategy
	Study Selection
	Data Extraction
	Data Analysis and Synthesis
	Risk of Bias Assessment

	Results
	Overall Summary
	Description of Studies
	Model Building Strategy
	Modeling Blood Test Trends
	Model Reporting
	Internal Validation
	External Validation
	Added Value of Trend
	Risk of Bias

	Discussion
	Principal Findings
	Comparison of Models
	Strengths and Limitations
	Comparison With Previous Work
	Clinical and Research Implications
	Conclusion



