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Abstract
Background: Diagnosing and managing follicular thyroid neoplasms (FTNs) remains a significant challenge, as the malig-
nancy risk cannot be determined until after diagnostic surgery.
Objective: We aimed to use interpretable machine learning to predict the malignancy risk of FTNs preoperatively in a
real-world setting.
Methods: We conducted a retrospective cohort study at the Peking University Third Hospital in Beijing, China. Patients with
postoperative pathological diagnoses of follicular thyroid adenoma (FTA) or follicular thyroid carcinoma (FTC) were included,
excluding those without preoperative thyroid ultrasonography. We used 22 predictors involving demographic characteristics,
thyroid sonography, and hormones to train 5 machine learning models: logistic regression, least absolute shrinkage and
selection operator regression, random forest, extreme gradient boosting, and support vector machine. The optimal model
was selected based on discrimination, calibration, interpretability, and parsimony. To address the highly imbalanced data
(FTA:FTC ratio>5:1), model discrimination was assessed using both the area under the receiver operating characteristic curve
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and the area under the precision-recall curve (AUPRC). To interpret the model, we used Shapley Additive Explanations
values and partial dependence and individual conditional expectation plots. Additionally, a systematic review was performed
to synthesize existing evidence and validate the discrimination ability of the previously developed Thyroid Imaging Reporting
and Data System for Follicular Neoplasm scoring criteria to differentiate between benign and malignant FTNs using our data.
Results: The cohort included 1539 patients (mean age 47.98, SD 14.15 years; female: n=1126, 73.16%) with 1672 FTN
tumors (FTA: n=1414; FTC: n=258; FTA:FTC ratio=5.5). The random forest model emerged as optimal, identifying mean
thyroid-stimulating hormone (TSH) score, mean tumor diameter, mean TSH, TSH instability, and TSH measurement levels
as the top 5 predictors in discriminating FTA from FTC, with the area under the receiver operating characteristic curve of
0.79 (95% CI 0.77‐0.81) and AUPRC of 0.40 (95% CI 0.37-0.44). Malignancy risk increased nonlinearly with larger tumor
diameters and higher TSH instability but decreased nonlinearly with higher mean TSH scores or mean TSH levels. FTCs
with small sizes (mean diameter 2.88, SD 1.38 cm) were more likely to be misclassified as FTAs compared to larger ones
(mean diameter 3.71, SD 1.36 cm). The systematic review of the 7 included studies revealed that (1) the FTA:FTC ratio varied
from 0.6 to 4.0, lower than the natural distribution of 5.0; (2) no studies assessed prediction performance using AUPRC in
unbalanced datasets; and (3) external validations of Thyroid Imaging Reporting and Data System for Follicular Neoplasm
scoring criteria underperformed relative to the original study.
Conclusions: Tumor size and TSH measurements were important in screening FTN malignancy risk preoperatively, but
accurately predicting the risk of small-sized FTNs remains challenging. Future research should address the limitations posed by
the extreme imbalance in FTA and FTC distributions in real-world data.
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Introduction
Globally, thyroid neoplasms are becoming increasingly
prevalent [1]. Among them, follicular thyroid neoplasms
(FTNs) represent a major type but have garnered significantly
less attention compared to papillary thyroid carcinoma. A
key challenge is that over 95% of FTN cases cannot be
reliably distinguished as benign (follicular thyroid adenoma
[FTA]) or malignant (follicular thyroid carcinoma [FTC])
until diagnostic surgery [2]. This uncertainty often leads to
both over- and undertreatment of patients with FTN. On one
hand, it is estimated that over 80% of patients who undergo
thyroidectomy might ultimately be diagnosed as benign FTN
based on postoperative pathology [3]. On the other hand,
those with malignant FTN may have already developed
distant metastases to the lungs, bones, or other organs by the
time they receive surgical treatment.

Several guidelines advocate for enhanced screening,
accurate diagnosis, and appropriate treatment for patients with
FTN [4,5]. One crucial solution is to develop prediction
models to aid clinical decision-making for these patients.
To date, machine learning has been proven effective in
constructing predictive models for various cancers such as
oral, gastrointestinal, and breast cancers [6-8]. Our litera-
ture review also indicated that machine learning technology
excels at capturing complex, nonlinear relationships and
high-dimensional intercorrelations among predictors [9-12].

However, our literature review revealed several limita-
tions among most of the existing studies, mainly including
(1) small sample sizes ranging from 18 to 888 participants
[13-19], (2) the ratio of FTA to FTC deviating from the real
population distributions, (3) reliance on simple linear models
unable to capture the complex nonlinearity or interactions

underlying predictor-outcome relationships [14,18], (4) using
inappropriate metrics to evaluate model performance for the
unbalanced data [13-19], (5) lack of assessing the extent to
which a predictor influences the model’s prediction (ie, model
interpretability) [13,16,19], (6) not evaluating whether the
predicted probabilities were consistent with actual outcomes
(ie, model calibration) in the development and validation
of clinical prediction models [20], and (7) predictors are
predominantly confined to sonographic features with limited
consideration of other factors such as the presence of
Hashimoto thyroiditis (an autoimmune disease that may
increase the risk for differentiated thyroid cancer [21]).

To address these limitations, our study has united a
multidisciplinary treatment team for thyroid neoplasms and
accumulated a cohort of over 1500 patients with FTN over
the past decade [22]. This provided us a unique opportunity
to develop and validate clinical prediction models to bridge
the current research gaps in the field of FTN. Specifically,
we aimed to individualize the clinical decision-making for
patients with FTN by using interpretable machine learning to
not only predict the malignancy risk of FTN but also identify
the important predictors that might contribute to the predic-
tion.

Methods
Study Design
This retrospective cohort study followed the suggestions
of the TRIPOD (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis)
statement [23]. Figure 1 shows the framework of our study.
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Figure 1. Study framework of the machine learning–based modeling to facilitate the clinical decision-making for patients of FTN. FTN: follicular
thyroid neoplasm; SHAP: Shapley Additive Explanations; TSH: thyroid-stimulating hormone.

Study Population
Our multidisciplinary research team included experts in the
fields of epidemiology, surgery, pathology, ultrasound, and
endocrinology. We conducted a retrospective cohort study
at Peking University Third Hospital in Beijing, China, from
January 2012 to September 2023. Eligible patients were those
who underwent surgery and were pathologically diagnosed
with FTA or FTC following the procedure. Patients were
excluded if they did not undergo ultrasound examinations
prior to surgery or if they had nodules classified as follic-
ular tumors of uncertain malignant potential (UMPs). This
exclusion was based on two considerations: (1) accurate
diagnosis of FTNs required both an experienced patholo-
gist and a complete biopsy sample. The key to distinguish-
ing between benign and malignant FTNs was determining
whether the tumor invaded the capsule. Tumors that invaded
the capsule or blood vessels were classified as FTC, while
those that did not were considered FTA. If the pathologist
struggled to assess capsule invasion due to inexperience,
or if the sample was inadequately collected during surgery,
leading to capsule damage, the tumor might not have been
accurately classified as either FTA or FTC. In such cases, it
could have been labeled as a UMP. (2) Through a literature
review, we found that all previous research had excluded
UMPs [13-19]. Therefore, our study also excluded UMPs,
enhancing comparability with prior research. We paid close
attention to the accuracy of the pathological diagnosis of FTN
due to its high professional requirements, which include not
only complete sampling but also a thorough examination of
all areas of the tumor margin. To ensure this, we invited

pathologists with expertise in thyroid tumors to double-check
all the postoperational pathological diagnoses in the study
population, based on the most recent 2022, 5th edition WHO
Classification of Thyroid Neoplasms [24].

It is important to note that our study population reflected
the natural distribution of FTNs (ie, the ratio of FTA and
FTC), resulting in imbalanced data, with 84.57% (n=1414)
of cases was FTA. Specifically, we did not restrict the
ratio of FTA to FTC to 1:1 or any other fixed ratio in the
main analyses. This approach allowed the results from the
developed prediction model to be more readily applicable to
external populations with a similar natural distribution.
Data Sources and Processing
The data for this study were sourced from the elec-
tronic health records, extracted by professional informa-
tion management personnel from the hospital’s electronic
information system. For critical data sources like thyroid
pathology and neck ultrasound reports, a tailored data
extraction form was designed using EpiData (EpiData
Association), aligning with the study’s research questions.
The form was iteratively refined through discussions among
researchers, surgeons, ultrasound specialists, and pathologists,
followed by trial entries and revisions until finalized. Trained
clinical doctors and medical students performed manual data
entry, with researchers conducting 2 rounds of random checks
to ensure accuracy and consistency. Senior doctors performed
a final review to verify data quality. Missing values were
imputed using the mean for continuous variables and the
mode for categorical variables.
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Predictors
We selected the predictors to develop the machine learn-
ing–based model based on our systematic review [17,18],
domain knowledge [25-27], and data available. The pre-
dictors included sonographic features, patients’ age, sex,
BMI, whether or not diagnosed as Hashimoto thyroidi-
tis (an autoimmune disease that destroys thyroid cells
by cell and antibody-mediated immune processes [28]),
and measurements of thyroid hormones. Specifically, the
sonographic features included mean diameter, composi-
tion (solid, predominantly solid, predominantly cystic, or
cystic), echogenicity (hyperechoic, isoechoic, hypoechoic, or
anechoic), taller-than-wide (the length in the vertical direction
is greater than the width in the horizontal direction: absent
or present), margin (circumscribed, ill-defined, irregular, or
lobulated), calcifications (microcalcifications, macrocalcifica-
tions, peripheral calcifications, punctate echogenic foci of
undetermined significance, microcalcifications with comet-
tail artifacts, or no echogenic foci), halo (absent halo,
even thickness halo, uneven thickness halo, or present halo
without evenness of thickness reported), internal blood flow
(absent or present), vascularity (mainly central vascularity,
mainly peripheral vascularity, mixed vascularity, or avascu-
larity), trabecular formation (typically appears as elongated,
band-like, or fibrous echogenicity, arranged in a reticular
or cord-like pattern: absent or present), and nodule-in-nod-
ule appearance (a smaller nodule or an area with different
echogenic characteristics is present within a larger thyroid
nodule: absent or present); the measurements at the latest
examination of thyroid hormones included thyroid-stimulat-
ing hormone (TSH), free triiodothyronine, and free thyroxine;
additionally, TSH-related features derived from all examina-
tions included mean TSH score (interval-adjusted detailed
TSH score) [29], time-adjusted root mean square of suc-
cessive differences of TSH [30], mean TSH (mean value
of preoperative TSH), and coefficient of variation of TSH
(the ratio of SD of preoperative TSH to mean value of
preoperative TSH), and detailed definitions were introduced
in previous publication [31]. All selected predictors were
carefully checked by both clinicians and researchers to ensure
the accuracy and reliability of the study results.
Development and Validation of Machine
Learning–Based Models
We established the machine learning–based model as shown
in Figure 1. We selected features, trained models, tuned
hyperparameters, and validated models, as briefly described
below. We used the mlr3 [32] ecosystem in R (version 4.3.3;
R Foundation for Statistical Computing), scikit-learn [33],
and Shapley Additive Explanations (SHAP) [34] in Python
(version 3.11.1; Python Software Foundation) to conduct
machine learning.

Feature selection, which aims to reduce the number
of features, offers several benefits including minimizing
overfitting, enhancing model robustness, and accelerating
predictions. Notably, it is particularly advantageous for
datasets with a high feature-to-sample ratio, where the
number of features exceeds the limited size of data points. To

identify a core set of predictors that could effectively predict
the outcome without redundancy, we used a novel informa-
tion-gain approach for feature selection [35]. To finalize
the optimal model, we also compared model performance
between that with full predictors and that with selected
predictors.

We trained 5 classification models including logistic
regression, least absolute shrinkage and selection opera-
tor (LASSO) regression, random forest, extreme gradient
boosting, and support vector machine. We comprehen-
sively considered and weighed (trade-off) the performance,
calibration, parsimony, and interpretability of models and
selected the most appropriate one as our prediction model.

The random search and cross-validation were combined
to select model hyperparameters when training the machine
learning model. We performed a random search over more
than 45,000 hyperparameter combinations to select the best
hyperparameter combination and trained the final classifi-
ers. Additionally, to address the issue of imbalance, both
oversampling (increasing the amount of minority class
samples with producing new samples or repeating some
samples) and undersampling (decreasing the amount of
majority class samples) techniques were applied [36].

Evaluation of Model Performance
We evaluated the performance of the developed model in
terms of discrimination (the ability of the model to distinguish
between those with and without the outcome) and calibra-
tion (the consistency or agreement between the observed
outcomes and predicted risks from the model). For discrim-
ination, we first showed the confusion matrix including
the numbers and percentages of true positive, true nega-
tive, false positive, and false negative. We then calcula-
ted both the threshold-free and threshold-sensitive metrics.
Threshold-free metrics included the area under the receiver
operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC). While AUROC was
a common performance metric for discrimination, AUPRC
was considered more useful and informative for handling
the unbalanced data in this study [37]. Threshold-sensi-
tive metrics included sensitivity, precision, specificity, and
accuracy. For calibration, we first plotted predicted risks
(x-axis) against observed outcomes (y-axis) using a smoothed
flexible calibration curve based on individual data. We also
quantitatively assessed calibration using the calibration slope
and calibration-in-the-large.
Interpretation of Model Prediction
Results
First, we evaluated the feature importance (ie, the extent of
the model depended on the feature) and the feature interac-
tion by using the SHAP summary plot and SHAP interaction
value dependence plot (see details in Multimedia Appendix
1) [34]. Second, we figured the partial dependence plots
to visualize the direction of predictor-outcome associations,
illustrate whether the risk of the outcome increased with a
rise or decline in the predictor values, and assess whether
this relationship is linear. Third, we plotted individual
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conditional expectations curves to explore potential modifiers
that could influence predictor-outcome associations. Finally,
we separated FTC into 2 groups based on whether they were
correctly predicted and compared their characteristics. The
significance of differences between the groups was tested
using the Mann-Whitney U test, as the data did not follow to
a normal distribution.
A Systematic Review of the Previous
Studies
We conducted a systematic review of previous studies
addressing similar topics. According to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [38] (see details in Checklist
1), we searched PubMed, Web of Science, Embase, and
IEEE Xplore using the terms “follicular thyroid cancer”
and “predict” for papers published up to October 1, 2023
(see details in Multimedia Appendix 2). Eligible studies
included those that established prediction models to dis-
tinguish FTC from FTA before operation with various
preoperative predictors. We included studies with either
deep learning models, machine learning models, traditional
statistical models, or other relevant methodologies. Studies
were excluded if fewer than 50% of patients had FTN or if the
papers were not written in English.

We evaluated the Thyroid Imaging Reporting and Data
System for Follicular Neoplasm (F-TIRADS) scoring criteria
developed by Li et al [18] to differentiate between benign
and malignant cases in our dataset. These criteria are based
on 6 key features: mean diameter, composition, echogenicity,
margin, calcifications, and trabecular formation. Each specific
characteristic of these features is assigned a corresponding

point value, and the total points across the 6 features indicate
the risk level of FTC. For instance, a total score of 12 points
or higher suggests an FTC risk exceeding 90% (refer to
Figure S1 in Multimedia Appendix 1).
Ethical Considerations
This study was classified as human participant research
and was reviewed and approved by the medical research
ethics committee of Peking University Third Hospital
(IRB00006761-M2023168). As a retrospective analysis, the
study was granted a waiver for additional informed con-
sent. During the data extraction process, strict confidential-
ity measures were implemented to ensure patient privacy
and data security. All extracted data were anonymized, with
any information that could directly identify patients being
removed.

Results
Characteristics of the Study Population
Altogether, we included 1539 patients, 1409 of whom had
solitary tumors, and 130 had more than 1 tumor. Thus, a total
of 1672 tumors were included and divided into 2 pathological
types: FTA (n=1414) and FTC (n=258). The characteristics of
the included tumors are listed in Table 1, and the characteris-
tics of the study population are listed in Table 2. The age of
the included population was 47.98 (SD 14.15) years (n=1530;
missing value=9), the mean BMI was 24.18 (SD 3.66) kg/m2

(n=1475; missing value=64), and the female population made
up 73.16% (n=1126; male: n=342; missing value=71) of all
patients.

Table 1. Characteristics of the tumors.
Characteristics FTAa FTCb

Number of tumors, n (%) 1414 (84.57) 258 (15.43)
Composition, n (%)

Solid 650 (45.97) 140 (54.26)
Predominantly solid 445 (31.47) 75 (29.07)
Predominantly cystic 161 (11.39) 16 (6.20)
Cystic 15 (1.06) 1 (0.39)
N/Ac 143 (10.11) 26 (10.08)

Echogenicity, n (%)
Anechoic 7 (0.50) 0 (0)
Hyperechoic 31 (2.19) 7 (2.71)
Isoechoic 660 (46.68) 105 (40.70)
Hypoechoic 547 (38.68) 130 (50.39)
N/A 169 (11.95) 16 (6.20)

Margin, n (%)
Circumscribed 1073 (75.88) 166 (64.34)
Ill-defined 38 (2.69) 6 (2.33)
Irregular 116 (8.20) 39 (15.12)
Lobulated 69 (4.88) 35 (13.57)
N/A 118 (8.35) 12 (4.65)
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Characteristics FTAa FTCb

Halo, n (%)
Uneven thickness halo 149 (10.54) 55 (21.32)
Even thickness halo 444 (31.40) 61 (23.64)
Absent halo 602 (42.57) 108 (41.86)
Present halo without evenness of thickness reported 83 (5.87) 11 (4.26)
N/A 136 (9.62) 23 (8.91)

Taller-than-wide, n (%)
Absent 1174 (83.03) 214 (82.95)
Present 73 (5.16) 18 (6.98)
N/A 167 (11.81) 26 (10.08)

Calcifications, n (%)
No echogenic foci 1134 (80.20) 179 (69.38)
Microcalcifications 106 (7.50) 24 (9.30)
Macrocalcifications 117 (8.27) 40 (15.50)
Peripheral calcifications 15 (1.06) 10 (3.88)
Microcalcifications with comet-tail artifacts 22 (1.56) 5 (1.94)
Punctate echogenic foci of undetermined significance 20 (1.41) 0 (0)
N/A 0 (0) 0 (0)

Internal blood flow, n (%)
Absent 163 (11.53) 21 (8.14)
Present 1183 (83.66) 227 (87.98)
N/A 68 (4.81) 10 (3.88)

Vascularity, n (%)
Mainly central vascularity 69 (4.88) 17 (6.59)
Mainly peripheral vascularity 420 (29.70) 64 (24.81)
Mixed vascularity 578 (40.88) 143 (55.43)
Avascularity 4 (0.28) 0 (0)
N/A 343 (24.26) 34 (13.18)

Trabecular formation, n (%)
Absent 1224 (86.56) 227 (87.98)
Present 30 (2.12) 15 (5.81)
N/A 160 (11.32) 16 (6.20)

Nodule-in-nodule appearance, n (%)
Absent 1231 (87.06) 227 (87.98)
Present 23 (1.63) 15 (5.81)
N/A 160 (11.32) 16 (6.20)

Mean diameter
Mean (SD) (cm) 2.30 (1.17) 2.94 (1.39)
N/A, n (%) 0 (0) 0 (0)

aFTA: follicular thyroid adenoma.
bFTC: follicular thyroid carcinoma.
cN/A: not available data.

Table 2. Characteristics of the study population.
Characteristics FTAa FTCb

Hashimoto thyroiditis, n (%)
Absent 854 (66.30) 129 (51.39)
Present 357 (27.72) 83 (33.07)
N/Ac 77 (5.98) 39 (15.54)
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Characteristics FTAa FTCb

Sex, n (%)
Male 286 (22.20) 56 (22.31)
Female 943 (73.21) 183 (72.91)
N/A 59 (4.58) 12 (4.78)

Age (years)
Mean (SD) 47.89 (14.05) 48.47 (14.68)
N/A, n (%) 1 (0.08) 8 (3.19)

BMI (kg/m2)
Mean (SD) 24.08 (3.64) 24.67 (3.70)
N/A, n (%) 59 (4.58) 5 (1.99)

Thyroid-stimulating hormone (μIU/mL)
Mean (SD) 1.76 (1.83) 1.99 (1.55)
N/A, n (%) 325 (25.23) 90 (35.86)

Free triiodothyronine (pg/mL)
Mean (SD) 3.27 (0.66) 3.32 (0.67)
N/A, n (%) 326 (25.31) 85 (33.86)

Free thyroxine (ng/dL)
Mean (SD) 1.27 (0.20) 1.26 (0.27)
N/A, n (%) 325 (25.23) 85 (33.86)

aFTA: follicular thyroid adenoma.
bFTC: follicular thyroid carcinoma.
cN/A: not available data.

Model Performance in Discrimination
and Calibration
We compared performance among 5 models (logistic
regression, LASSO regression, random forest, extreme
gradient boosting, and support vector machine) using the
AUROC and AUPRC. As shown in Multimedia Appendi-
ces 3 and 4, the random forest model performed better in
both AUROC and AUPRC than the other 4 models. With
comprehensive consideration of the discrimination, calibra-
tion, parsimony, and interpretability of models, we selected
the random forest model as the optimal.

We developed a random forest model with a total of
22 features: age, sex, BMI, Hashimoto thyroiditis, thyroid
hormones (TSH, free triiodothyronine, and free thyroxine),
ultrasonic predictors (mean diameter, composition, echoge-
nicity, taller-than-wide, margin, calcifications, halo, internal
blood flow, vascularity, trabecular formation, and nodule-in-
nodule appearance), and TSH-related variables (mean TSH
score, time-adjusted root mean square of successive differ-
ences of TSH, mean TSH, and coefficient of variation of
TSH). After 5-fold cross-validation, the AUROC of the
prediction model was 0.79 (95% CI 0.77-0.81) and the
AUPRC was 0.40 (95% CI 0.37-0.44). When the thresh-
old is gradually lowered from 50%, 40%, 30%, 20%,
and finally to 10%, the accuracy, specificity, and preci-
sion decreased step by step while the sensitivity increased
progressively (Multimedia Appendix 5). The calibration slope

and calibration-in-the-large were 1.16 and 0.13, respectively
(Multimedia Appendix 6).

In addition, we implemented both oversampling and
undersampling techniques to handle the imbalance in our
models. However, following oversampling, the AUROC
and AUPRC were 0.76 and 0.37, respectively, while after
undersampling, the AUROC and AUPRC were 0.77 and 0.39,
respectively. Notably, the model performed better before
applying these sampling methods, with an AUROC of 0.79
and an AUPRC of 0.40.
Model Performance in Interpretation
The top 5 predictors were the mean TSH score, mean tumor
diameter, mean TSH, coefficient of variation of TSH, and
TSH level (Figure 2). The 5 top predictors did not show
explicit interactions with the sex or other predictors (Multi-
media Appendix 7). Due to the strong correlation between
TSH level and mean TSH score (correlation coefficient>0.6),
we only plotted the partial dependence and individual
conditional expectation plots for the top 4 features, exclud-
ing the TSH level. The associations between those 4 top
continuous features and prediction probability were nonlinear
(Multimedia Appendix 8). In general, the risk of malignancy
tended to rise as the mean tumor diameter or the coefficient
of variation of TSH increased, and the risk of malignancy
tended to decrease as the mean TSH score or the mean TSH
increased.
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Figure 2. SHAP summary plot. SHAP: Shapley Additive Explanations; TSH: thyroid-stimulating hormone.

Moreover, we compared the characteristics of FTC groups
with incorrect and correct predictions. FTC predicted as
FTA by the model was classified into the incorrect-predicted
group, while FTC predicted as malignant correctly by the
model was then classified into the correct group. The mean
diameter of the tumor was smaller in the incorrect-predicted
group compared to the correct-predicted group (incorrect vs
correct mean 2.88, SD cm 1.38 vs mean 3.71, SD 1.36 cm;
mean diameter W=1474.5; P=.02).
A Systematic Review of the Previous
Studies
After screening citations, we eventually included 7 studies
in this systematic review (refer to Figure 3). The charac-
teristics of the included studies are presented in Table 3.
The sample sizes of the studies ranged from 18 to 888
patients [13-19]. The ratio of FTA to FTC in previous studies
varied from 0.64 to 4.00 [13-19], which was much smaller
than the ratio observed in our study (5.50) and in the real
population, where the ratio of FTA to FTC can be as high

as 5:1 [3]. In total, 3 studies even set the ratio close to 1 to
address the imbalance [15,17,19]. As for the model selection,
4 studies developed deep learning models [13,16,17,19], 1
study used a random forest model [15], and the other 2
studies only established linear regression models [14,18],
without concerning nonlinear associations or complicated
interactions. Previous studies did not use gene mutations and
other biomarkers as predictive variables. Except for 1 study
from South Korea, which reported an AUROC of just 0.612
[13], the AUROC of the models in the other studies ranged
from 0.75 to 0.96. However, none of them used AUPRC as
a metric to assess discrimination. As for the interpretation of
the models, Lin et al [15] assessed the feature importance,
Tang et al [14] drew a nomogram, Li et al [18] developed
F-TIRADS scoring criteria, and Yang et al [17] drew a heat
map to visualize the importance of pixel regions, but the other
3 studies did not further explore interpretability, including
feature importance, or the linear and nonlinear associations
and interactions between features and targets.
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Figure 3. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) study flow diagram. FTN: follicular thyroid neoplasm.
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Table 3. Characteristics of the included studies.

Study Country

Pathological ratio
(FTAa/
FTCb~ratio) Features Model

Exte
rnal
test
set

Sample size
(n, patients) Discrimination Interpretation

Seo et al
(2017)
[16]

Korea 250/83~3.01 Ultrasound
image

CNNc No Training set: 78;
validation set: 229

Sensitivity: 71.05%;
specificity: 93.19%;
precision: 89.52%;
AUROCd: 0.8088

No

Shin et
al (2020)
[13]

Korea 252/96~2.63 Ultrasound
image

ANNe and
SVMf

No Training set: 340;
validation set:
leave-one-out cross-
validation

ANN: precision: 74.1%;
sensitivity: 32.3%;
specificity: 90.1%;
AUROC: 0.612; SVM:
precision: 69%;
sensitivity: 41.7%;
specificity: 79.4%;
AUROC: 0.605

No

Yang et
al
(2020)g
[19]

China Number of images:
training set:
340/324~1.05;
validation set:
85/81~1.05;
additional test set:
154/146~1.05

Ultrasound
image

CNN No Training set: 664
images; validation
set: 166 images; test
set: 300 images

Sensitivity: 95.89%;
specificity: 96.10%;
precision: 96%;
AUROC:0.96

No

Tang et
al (2021)
[14]

China 112/28~4.00 Computed
tomograph
y features
and
clinical
features
and
hormone
level

LASSOh
regression

No Training set: 140;
validation set: 60

Sensitivity: 92.9%;
specificity: 77.7%;
precision: 80%;
AUROC: 0.913 (95%
CI 0.850‐0.975)

Nomogram

Li et al
(2023)
[18]

China Training set:
515/188~2.74;
validation set:
122/33~3.70

Ultrasound
features

LASSO
regression and
logistic
regression

No Pretraining set: 30;
training set: 703;
validation set: 155

LASSO regression:
sensitivity: 66%;
specificity: 72%;
precision: 71%;
AUROC: 0.76 (95% CI
0.72‐0.79); Logistic
regression: sensitivity:
64%; specificity: 75%;
precision: 72%;
AUROC: 0.75 (95% CI
0.71‐0.79)

F-TIRADSi
scoring criteria

Yang et
al (2023)
[17]

China Training set:
705/687~1.02;
validation set:
177/172~1.03;
external test set:
150/159~0.94

Ultrasound
image

CNN Yes Training set: 352;
validation set: 80;
external test set: 71

Sensitivity: 66.7%;
specificity: 79.6%;
precision: 73%;
AUROC: 0.81 (95% CI,
0.76‐0.86)

Heat map

Lin et al
(2024)
[15]

United
States

7/11~0.64 Ultrasound
image
features
and clinical
features

Random forest No Training set: 18;
validation set:
leave-one-out cross-
validation

Sensitivity: 100%;
specificity: 43%;
AUROC: 0.792

Feature
importance

aFTA: follicular thyroid adenoma.
bFTC: follicular thyroid carcinoma.
cCNN: convolutional neural network.
dAUROC: area under the receiver operating characteristic curve.
eANN: artificial neural network.
fSVM: support vector machine.
gYang et al (2020) [19] did not report the numbers of patients or nodules.
hLASSO: least absolute shrinkage and selection operator.
iF-TIRADS: Thyroid Imaging Reporting and Data System for Follicular Neoplasm.
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Additionally, we tested the F-TIRADS scoring criteria
developed by Li et al [18] with our dataset. The criteria
specify 6 key features for scoring. After filtering our data
to include only cases with complete information for these
6 features, we selected 1025 tumors from 993 patients as
an external test set. When applying the F-TIRADS scoring
criteria, the predictive performance was suboptimal. With a
threshold for FTC risk set at >90%, the model achieved an
accuracy of 0.82, sensitivity of 0.04, specificity of 0.99, and
precision of 0.53. When using a >50% FTC risk threshold, the
sensitivity increased to 0.27, while accuracy, specificity, and
precision decreased to 0.79, 0.91, and 0.39, respectively. For
threshold-independent metrics, the AUROC and AUPRC for
the F-TIRADS scoring criteria were 0.47 and 0.59, respec-
tively, in our external test set.

Discussion
Principal Findings
This study systematically established the interpretable
machine learning–based model to address the challenge of
clinical decision-making for the FTN before surgery. We
developed a model using 22 readily available predictors with
a preferable AUROC (0.79, 95% CI 0.77‐0.81). Additionally,
the model demonstrated excellent interpretability, identifying
the mean TSH score, mean tumor diameter, mean TSH,
coefficient of variation of TSH, and TSH level as the most
important predictors. After comparing groups of incorrect-
predicted and correct-predicted FTC, we found that smaller
FTCs were more likely to be misclassified as FTA.
Comparison to Prior Work
It is crucial to evaluate the performance of clinical prediction
models comprehensively, that is, the models should be well
performed in discrimination and calibration. Concerning the
discrimination, our developed model was comparable to that
of previous studies aimed at predicting the malignancy risk
of FTN before surgical treatment. For example, according
to Li et al [18], the AUROC reached 0.76 in the LASSO
regression model consisting of ultrasound features (the ratio
of FTA to FTC: training set: 2.74 and validation set: 3.70);
also, in the LASSO regression model, the AUROC reached
0.913 in discriminating FTA from FTC on selected clini-
cal parameters, computed tomography signs, and radiomic
features referring to Tang et al [14] (the ratio of FTA to
FTC: 4.00). However, neither study used AUPRC as the
evaluation metric. We also acknowledge that the model
was derived from extremely imbalanced data (the ratio of
FTA to FTC: 5.50), and in this context, the AUPRC metric
for assessing model performance is more informative and
intuitive than the AUROC [37]. For example, the predic-
tion model might perform relatively well when measured by
AUROC but may perform unsatisfactorily when measured
by AUPRC, in the scenario of imbalanced data. Further-
more, to address the imbalance in our models, we applied
oversampling and undersampling techniques, but both failed
to improve performance. Our findings were in line with
the previous research, which found that oversampling and

undersampling generally did not enhance prediction models
in large observational health datasets [39]. The possible
reasons might be as follows: (1) oversampling and undersam-
pling would modify the outcome proportions in the training
data, leading to miscalibration, such as overestimated risks
[39]; (2) the synthetic data generated by oversampling may
not accurately represent the original distribution of minority
class, potentially affecting classification performance [40];
and (3) undersampling reduced the number of majority class
samples, limiting the model’s ability to fully use the features
of the majority class during training [41].

As one previous systematic review indicated, calibra-
tion was commonly overlooked during the development
and validation of clinical prediction models [20]. However,
calibration metrics are also important to assess the size of
the gap between the predicted risk probability and the true
risk probability. For instance, grouping can be manipulated to
obscure the evaluation of miscalibration in a particular range
without a calibration curve and its numerical quantification
[42]. In general, our model had relatively good calibration, as
the calibration slope was close to 1 and the calibration-in-the-
large close to 0.

Based on the results of our systematic review, most of the
previous studies show relatively satisfying AUROC, but none
of them reported AUPRC. Although Li et al [18] reported a
handy score-risking tool for clinicians to assess the malig-
nancy risk of FTN at the diagnosis stage, this tool seemed
to not perform ideally in the practice of our data (AUROC
0.47; AUPRC 0.59; sensitivity 0.04 [threshold 90%] and 0.27
[threshold 50%]).
Limitations and Strengths
We should interpret the study findings cautiously. As with
other single-center studies, the results from this study were
limited in generalizability to patients and clinical settings with
distinct characteristics. However, the pathological diagnosis
of FTC was highly heterogeneous across different clinical
settings due to its challenge in sufficient sampling and
accurate diagnosis. Therefore, we advocated for the standard-
ization of FTC diagnosis before the conduction of a multi-
center study soon. Additionally, the prediction performance
of models, comparable to the previous work with similar
predictors, had room to further improve. The clinical utility
of the screening stage was also less than ideal. Building
on the experiences and lessons learned from this study, we
are conducting a prospective cohort study to further opti-
mize the model performance through collecting other costly
multidimensional predictors including genomics, ultrasound
images, and videos. Besides, our study was retrospective
in nature, which may introduce selection bias. Furthermore,
we excluded patients with nodules of UMPs, potentially
limiting the model’s accuracy in identifying borderline
follicular tumors. Moreover, our models did not incorpo-
rate other potential predictors, such as genetic markers (eg,
BRAF, TRET, and RAS mutations), computed tomography or
magnetic resonance imaging characteristics, or family history,
due to constraints in data availability.
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Our study had several strengths. Our models were
advantageous in the large sample size for the present
topic, the clinically easy-accessible and clinician-validated
predictors, and the comprehensive evaluation with the metrics
appropriate for the nature of the data (imbalanced data) [43].
Furthermore, the disease distribution of FTA and FTC in the
study population was fully consistent with that of patients
with FTN in real-world settings, that is, we did not deliber-
ately over- or undersample patients with any type of disease
in the model development, as commonly seen in previous
studies [17,18]. As such, findings from our study had
theoretically better fidelity and generalizability in real-world
settings. In addition, we conducted a systematic review to
synthesize findings from previous studies, comprehensively
integrate the evidence, and identify research gaps.
Future Directions
Our study paved the way for future research in terms of
predictors, models, and targets. Concerning predictors and
models, further studies might consider taking advantage of
the rapidly developing deep learning models and fully using
high-dimension predictors such as ultrasound images and
genomics. In terms of targets, it is important to standardize
the pathological diagnosis of FTC across multiple centers
before conducting a future multicenter study.

Our study is also important for future clinical practice.
First, findings from the interpretation of our models indi-
cate that clinicians should comprehensively consider patients’
variables such as thyroid hormones in addition to the
ultrasound results. Second, in a natural distribution popula-
tion with severely unbalanced data (FTA is far more than
FTC), preoperative prediction of FTA and FTC by thyroid
hormone and ultrasound features alone may face challenges,
especially for relatively small-sized FTCs, which are easy to
miss detection.
Conclusions
In clinical practice, it remained challenging to sensitively
screen, precisely diagnose, and appropriately treat patients
with FTN. Interpretation of our developed machine learn-
ing–based model suggests that clinicians should also pay
attention to patients’ variables such as TSH along with tumor
size. However, it may be hard to correctly predict FTNs
preoperatively with thyroid hormone and ultrasound features
alone, especially for FTCs with small sizes. The findings
of our study bridged the gaps of previous work and paved
the way for connecting machine learning to interpretation in
the field of FTN research. We call for subsequent studies to
further examine the generalizability to other contexts.
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