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Abstract
Background: Natural language processing systems for data extraction from unstructured clinical text require expert-driven
input for labeled annotations and model training. The natural language processing competency of large language models
(LLM) can enable automated data extraction of important patient characteristics from electronic health records, which is useful
for accelerating cancer clinical research and informing oncology care.
Objective: This scoping review aims to map the current landscape, including definitions, frameworks, and future directions of
LLMs applied to data extraction from clinical text in oncology.
Methods: We queried Ovid MEDLINE for primary, peer-reviewed research studies published since 2000 on June 2, 2024,
using oncology- and LLM-related keywords. This scoping review included studies that evaluated the performance of an LLM
applied to data extraction from clinical text in oncology contexts. Study attributes and main outcomes were extracted to outline
key trends of research in LLM-based data extraction.
Results: The literature search yielded 24 studies for inclusion. The majority of studies assessed original and fine-tuned
variants of the BERT LLM (n=18, 75%) followed by the Chat-GPT conversational LLM (n=6, 25%). LLMs for data extraction
were commonly applied in pan-cancer clinical settings (n=11, 46%), followed by breast (n=4, 17%), and lung (n=4, 17%)
cancer contexts, and were evaluated using multi-institution datasets (n=18, 75%). Comparing the studies published in 2022‐
2024 versus 2019‐2021, both the total number of studies (18 vs 6) and the proportion of studies using prompt engineering
increased (5/18, 28% vs 0/6, 0%), while the proportion using fine-tuning decreased (8/18, 44.4% vs 6/6, 100%). Advantages of
LLMs included positive data extraction performance and reduced manual workload.
Conclusions: LLMs applied to data extraction in oncology can serve as useful automated tools to reduce the administrative
burden of reviewing patient health records and increase time for patient-facing care. Recent advances in prompt-engineering
and fine-tuning methods, and multimodal data extraction present promising directions for future research. Further studies are
needed to evaluate the performance of LLM-enabled data extraction in clinical domains beyond the training dataset and to
assess the scope and integration of LLMs into real-world clinical environments.
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Introduction
The advent of electronic health records (EHR) has allowed
clinicians to leverage their access to vast amounts of
longitudinal, patient-level clinical text data that inform patient
diagnoses, prognoses, and management [1]. However, the
majority of useful clinical data are stored as unstructured
free text that requires manual extraction into meaningful
clinical features; therefore, clinicians spend more time on
administrative work reviewing EHRs instead of practising
patient-facing medicine [1]. To address this task of extracting
key attributes from unstructured clinical text, natural language
processing (NLP) methods have classically applied rule-based
and machine-learning methods to identify important entities
in text and categorize them based on categories of interest
[2]. For instance, the extraction of cancer staging information
from clinical text requires an NLP algorithm to recognize
references to cancer staging in clinical texts and catego-
rize these references according to defined cancer staging
nomenclature, such as the TNM classification of malignant
tumors system.

Rule-based classification relies on domain expert-designed
rules, heuristics, ontologies, and pattern-matching techni-
ques to extract information from text. In contrast, machine
learning-based approaches use statistical models trained on
large-scale labeled text data to automatically learn patterns
and generalize these learned competencies in data extraction
to unlabeled testing data. The emergence of deep learn-
ing models, a subfield of machine learning that focuses
on artificial neural network models with multiple process-
ing layers, has been particularly effective at modeling the
hierarchical structure of natural language and demonstrated
superior performance across diverse NLP tasks, including but
not limited to data extraction [3].

One particularly promising deep learning architecture,
known as the transformer model, has gained worldwide
attention for its generative language competency and strong
performance in question answering, sentence completion, and
sentence classification tasks compared to other deep learning
models [4]. Deep learning–based transformer models may
require less time and fewer resources needed to manually
annotate training datasets compared to classical machine
learning models and can better address nuanced edge cases
in data extraction that may not be explicitly accounted for
in rule-based data approaches [5,6]. However, these models
are often limited by their need for large-scale computational
resources and training data [7,8].

Modern LLMs are commonly built using adaptations of
the transformer architecture and trained on large corpora
of text to enable human-like natural language competency.
Due to their extensive training dataset, LLMs such as BERT
and GPT may have zero-shot capabilities, meaning they
can perform tasks without prior task-specific training [9].
Emerging research on fine-tuning LLMs with custom datasets
and prompt engineering for conversational LLMs has yielded
promising performance improvements for specialized NLP
tasks compared to baseline LLMs.

Given the longitudinal nature of cancer care, the vast
amount of clinical text associated with cancer patient EHRs
necessitates the development of automated methods for
data extraction from these clinical records into structured
data, which is useful for review by oncologists. The broad
natural language competency of LLMs encourages the design
of specialized LLM applications for data extraction from
unstructured clinical text, reducing the oncologists’ time and
effort spent in manually reviewing patient EHRs to extract
key information to inform their clinical decision-making.

The emergence of several recent pilot studies of LLM-ena-
bled data extraction prompts the need for a scoping review
to map the current landscape, including definitions, frame-
works, and future directions for this novel tool in clinical
data extraction. This review seeks to address this gap in
the literature by characterizing primary research articles that
evaluated an LLM tool applied to data extraction from
unstructured clinical text into structured data.

Methods
We queried OVID Medline on June 2, 2024, using oncol-
ogy (“neoplasms,” “cancer,” “onco,” “tumor”) and generative
LLM (“natural language processing,” “artificial intelligence,”
“generative,” “large language model”) keywords in consul-
tation with a librarian. Non-English articles, nonprimary
research articles, articles published before 2000, and articles
published in nonpeer-reviewed settings were excluded. The
full search strategy is detailed in Multimedia Appendix 1.
Following the deduplication of articles (n=10) using the
Covidence review management tool, the literature search
yielded 817 articles for manual screening.

We conducted abstract screening followed by full-text
screening of articles in duplicate (KA and SA), includ-
ing primary research articles that tested a large language
model, were applied in oncology contexts, and evaluated
the performance of data extraction from text. The arti-
cles that evaluated an NLP-based algorithm that did not
assess an LLM, were secondary research articles, applied in
only nononcology settings, and did not evaluate or report
the performance of data extraction from the clinical text
were excluded. Screening conflicts were resolved through
consensus discussion with a third reviewer (DC).

We extracted key study attributes from the included
full-text papers in duplicate (KA and SA), including clinical
domain, LLM attributes (eg, model, use of fine-tuning, use
of prompt engineering), the dataset used for training and
testing, primary study outcomes, model training methodol-
ogy, and model evaluation processes. The LLMs were coded
as baseline if they were applied “out of the box” without
additional fine-tuning. LLMs were coded as (1) fine-tuned
LLMs: the study described training the baseline LLM on
a custom dataset intended to yield improved data extrac-
tion performance compared to the baseline LLM alone; (2)
zero-shot LLMs: they were applied “out-of-the-box” without
additional prompt engineering, (3) prompt engineered LLMs:
the study described adaptations to prompting procedures,
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such as one-shot or few-shot prompting, designed to yield
improved data extraction performance compared to the
baseline LLM alone. Data extraction conflicts were resolved
through consensus discussion with a third reviewer (DC).

The synthesis of extracted data involved grouping studies
based on similarities in the evaluated specific model, clinical
domain applied, and shared themes of strengths and limi-
tations, based on outcomes reported by the studies. The
appraisal process involved the completion of a standardized
data extraction form to systematically code in duplicate (KA
and SA) which articles commented on which themes of
strengths and limitations, and the discrepancies were resolved
through discussion (DC and SR). The risk of bias was
assessed using ROBINS-I (Version 2) in duplicate (KA and
SA), with conflicts resolved through consensus discussion

with a third reviewer (DC). Cohen κ score was used to assess
inter-rater concordance. This scoping review followed the
PRISMA-ScR reporting guideline.

Results
The literature search yielded 817 papers, of which 24 papers
met the inclusion criteria (Figure 1). Most included papers
exhibited moderate (n=15, 62.5%) risk or low (n=9, 37.5%)
risk of bias (Figure 2). The most common domains for
moderate risk of bias included bias due to confounding
(n=21, 87.5%) and bias in the selection of the reported
result (n=21, 87.5%). No papers scored a high risk of bias
in any domain. ROBINS-I risk of bias assessment exhibited
moderate inter-rater concordance based on an κ score of 0.43.

Figure 1. Search and filtering strategy used to select large language model studies evaluating data extraction performance for inclusion in this review.
LLM: large language model.
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Figure 2. Risk of bias assessment using the ROBINS-I tool displayed as a traffic light plot for each included study [1,3,5-26].

Characteristics of the studies included in the study and
published between 2019‐2024 are shown in Table 1. The
most common LLMs reported in these studies included BERT

and its variants, as well as ChatGPT. Additional details
related to methodology are reported in Multimedia Appendix
2.
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Table 1. Characteristics of studies included in the review.

Study ID Clinical domain Baseline model
Baseline or fine-
tuned LLMa

Zero-shot or
prompt
-engineered LLM LLM main outcomes

Solarte-Pabon
2023[10]

Breast BERT; RoBERTa Fine-tuned Zero-shot F-scores: BETA: 0.9371;
Multilingual BERT: 0.9463;
RoBERTa Biomedical:
0.9501; RoBERTa BNE:
0.9454

Choi 2023 [11] Breast ChatGPT-3.5 Baseline Prompt-engineered Accuracy: 87.7%
Zhou 2022 [3] Breast BERT Fine-tuned Zero-shot F1-score: 0.866 and 0.904 for

exact and permissive matches
respectively

Zhang 2019 [1] Breast BERT Fine-tuned Zero-shot NER:b 93.53%; Relation
extraction: 96.73% (best
model, BERT+ Bi-LSTM-
CRF)

Seong 2023 [5] Colorectal Bi-LSTM with a CRF
layer; BioBERT

Fine-tuned Zero-shot Bi-LSTM-CRF:c Precision:
0.9844; F1-score:0.9848; Pre
trained word embedding
performed better than the one
hot encoding pre-processing

Laios 2023 [12] Gynecology RoBERTa Baseline Zero-shot AUROC:d 0.86; AUPRC:e
0.87; F1: 0.77; Accuracy:
0.81

Liu 2021 [13] Liver BERT Fine-tuned Zero-shot APHEf: 98.40%; PDPHg:
90.67%

Fink 2023 [14] Lung ChatGPT-3.5; ChatGPT-4.0 Baseline Prompt-engineered Overall accuracy: GPT-4:
98.6%; GPT-3.5: 84%
Metastatic ID accuracy:
GPT-4: 98.1%; GPT-3.5:
90.3%
Oncologic progression
accuracy: GPT-4 F1: 0.96;
GPT-3.5: 0.91
Oncologic reasoning
correctness: GPT-4: 4.3;
GPT-3.5: 3.9
accuracy: GPT-4: 4.4;
GPT-3.5: 3.3

Chen 2023 [15] Lung   BERT Fine-tuned Zero-shot Macro F1-score: Task 1:0.92;
Task 2: 0.82; Task 3: 0.74

Lyu 2023 [16] Lung ChatGPT-4.0 Baseline Zero-shot Translate: 4.27/5; Provided
specific suggestions based on
findings in 37% of all cases

Yu 2021 [7] Lung BERT; RoBERTa Fine-tuned Zero-shot BERT Lenient: 0.8999
BERT Strict: 0.8791

Martin-Noguerol 2024
[17]

Neurology BERT Fine-tuned Zero-Shot HGG: Precision: 79.17;
Sensitivity: 76; F1:77.55;
Metastasis: Precision: 73.91;
Sensitivity: 77.27; F1: 75.56;
AUC: 76.64

Fang 2022_1 [18] Endocrine BERT-BiLSTM-CRF Fine-tuned Zero-shot Strict F1-score: 91.27%;
Relaxed F1-score: 95.57%

Huang 2024 [19] Pan-cancer ChatGPT-3.5 Baseline Prompt-engineered Accuracy 0.89; F1 0.88;
Kappa 0.80; Recall 0.89;
Precision 0.89, Coverage 0.95

Arya 2024 [6] Pan-cancer BERT Fine tuned Zero-shot Predict imaging scan site:
Precision:99.4%;
Recall:99.4%; F1-score:
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99.3%; AUROC:99.4%;
Accuracy:99.9%; Predict
cancer presence:
Precision:88.8%;
Recall:89.2%; F1:88.8%;
AUROC:97.6%;
Accuracy:93.4%; Predict
cancer status:
Precision:85.6%;
Recall:85.5%; F1-score:
85.5%; AUROC:97%;
Accuracy:93.1%

Truhn 2024 [9] Pan-cancer ChatGPT-4.0 Baseline Zero-shot Experiment 1: Correct T-
stage: 99%; Correct N-stage:
95; Correct M stage: 94;
Lymph nodes; 99%
Experiment 3: 100% accuracy

Hu 2024 [8] Lung ChatGPT-4.0 Baseline Prompt-engineered Prompt Base: Accuracy:
0.937; Precision: 0.860;
Recall: 0.917; F1-
score:0.882; Prior medical
knowledge: Accuracy: 0.940;
Precision:0.900; Recall:
0.864; F1:0.867; PMK-ENh:
Accuracy: 0.896;
Precision:0.871: Recall:0.776;
F1: 0.786

Elmarakeby 2023 [20] Pan-cancer BERT Fine-tuned Zero-shot AUC: ClinicalBERT: 0.93;
DFCI-ImagingBERT: 0.95
F1: ClinicalBERT: 0.72;
DFCI-ImagingBERT: 0.78

Tan 2023 [21] Pan-cancer GatorTron; BERT;
PubMedGPT

Fine-tuned Prompt-engineered Accuracy: GatorTron: 0.8916;
BioMegatron:0.8861;
BioBERT:0.8861;
RoBERTa:0.8813;
PubMedGPT:0.8762;
DeBERTa:0.8746;
BioClinicalBERT: 0.8746;
BERT: 0.8708

Fang 2022_2 [22] Pan-cancer BERT Baseline Zero-shot ROC:i 0.94
Mitchell 2022 [23] Pan-cancer BERT Fine-tuned Zero-shot Group level site accuracy:

93.53%; Histology codes:
97.6%

Lu 2021 [24] Pan-cancer BERT Fine-tuned Zero-shot Symptom domains: 0.931;
problems with cognitive and
social attributes on pain
interference: 0.916; problems
on fatigue: 0.929

Percha 2021 [25] Breast ALBERT; BART;
ELECTRA; RoBERTa;
XLNet

Fine-tuned Zero-shot ALBERT was the best-
performing model in 22 out of
the 43 fields

Gao 2021 [26] Pan-cancer BlueBERT Fine-tuned Zero-shot BERT does not outperform
baseline models–quantifiable
measures not available

aLLM: large language model.
bNER: named entity recognition.
cBi-LSTM-CRF: bidirectional-long short term memory-conditional random field.
dAUROC: area under the receiver operating characteristic.
eAUPRC: area under the precision-recall curve.
fAPHE: hyperintense enhancement in the arterial phase.
gPDPH: hypointense in the portal and delayed phases.
hPMK-EN: Prior Medical Knowledge-English Prompt
iROC: receiver operating characteristic.
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Most studies evaluated either the original or fine-tuned
variants of the BERT LLM (n=18, 75%) in studies published
between 2019‐2024, followed by the Chat-GPT conversa-
tional LLM (n=6, 25%), upon application to data extraction
from clinical texts in oncology, in studies published between
2023‐2024. The LLMs for data extraction were commonly
applied in pan-cancer clinical settings (n=11, 46%), followed
by breast (n=4, 17%), lung (n=4, 17%), neurological (n=2,
8%), colorectal (n=1, 4%), gynecological (n=1, 4%), and
liver (n=1, 4%) cancer contexts. The author teams of these
studies belonged to institutions in the United States (n=11,
46%), China (n=4, 17%), Korea (n=3, 12%), Germany (n=2,
8%), Spain (n=2, 8%), the United Kingdom (n=1, 4%),

and Singapore (n=1, 4%). Most studies were evaluated on
datasets sourced from multiple institutional centers (n=18,
75%) compared to a single institutional center (n=6, 25%).
Regarding the year of study publication, we observed a higher
number of studies published between 2022‐2024 (n=18, 75%)
compared to 2019‐2021 (n=6, 25%) (Figure 3). Notably, upon
a comparison of studies published between 2022‐2024 with
studies between 2019‐2021, the proportion of studies that
reported the use of the fine-tuning method was lower (10/18,
55.6% vs 6/6, 100%) (Figure 3A), whereas the proportion
of studies that reported the use of prompt engineering was
higher (5/18, 28% vs 0/6, 0%) (Figure 3B).

Figure 3. Number of studies that evaluated (A) fine-tuning and (B) prompt engineering methodologies to optimize large language model data
extraction performance.

Discussion
Principal Findings
Our scoping review of 24 studies highlights significant
research interest in designing, evaluating, and deploying
LLMs for data extraction from clinical text in oncology.
The most commonly used LLMs for data extraction from
clinical text in oncology include BERT and Chat-GPT, two
of the most well-known LLMs in NLP research. These LLMs
were most frequently applied in pan-cancer clinical contexts,
reflecting their generalized natural language competency,
regardless of clinical domain and context-specific terminolo-
gies and nomenclature. We observed a notable trend toward
increasing utilization and refinement of LLM techniques over
time, particularly in the areas of fine-tuning and prompt
engineering. Given the common application of fine-tuning
[26-28] and prompt-engineering [1,29,30] techniques in the
design of deep learning- and LLM-based models in oncol-
ogy, respectively, the emergence of optimized LLMs using
these techniques represents a promising future direction for
enhancing their data-processing capabilities. Despite these
advancements, mixed reports of data extraction performance
underscore the imperative for further assessment of these
models across specific topics and use cases before their
deployment as tools in cancer research and clinical care.
Compared to historical statistical NLP and machine learning-
based methods for data extraction in oncology, LLMs have

been broadly evaluated for comparable applications, such as
extracting tumor and cancer characteristics and patient-related
demographic data [31].

The data processing competency of LLMs makes them
a useful tool for automating repetitive, rule-based tasks,
such as data extraction from clinical text on EHRs, to
generate medical evidence about specific patients and patient
populations that can inform patient care and population health
guidelines respectively. Notably, LLMs have already shown
competency in pilot studies of automated data extraction
in biology [32], materials science [33], and pharmacology
[33], suggesting their generalized ability to extract relevant
named entities from the clinical text that may be useful to
synthesize medical knowledge. Across the included studies
in this review, we found that LLMs offer several bene-
fits for data extraction in clinical oncology, though further
benchmarking against representative datasets and classical
machine learning or statistical NLP approaches is required
to determine their superior performance. In general, LLMs
exhibited positive performance metrics compared to baseline
human or statistical NLP approaches or were deemed feasible
and acceptable in cross-sectional studies. These LLMs harbor
the potential to balance accuracy and efficiency when
processing large-scale, complex, unstructured text datasets
found in EHRs [19]. Using LLM approaches for clinical
data extraction as a supportive tool along with a human
reviewer may reduce the potential for errors associated with
human-led manual data extraction alone, thereby enhancing
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the reliability of clinical data analyses and interpretations
[34].

Moreover, LLMs may curtail the resources required for
data extraction, which is traditionally a labor- and time-inten-
sive process [35]. For instance, our review highlighted the
generalized performance of LLM-enabled data extraction
across various text types in oncology, including histologi-
cal and pathological classification [9,36], imaging report
classification [8,14], and data extraction from postopera-
tive surgery reports [5]. By automating the extraction and
preliminary analysis of clinical text data, these models may
free up valuable time for health care professionals, allow-
ing them to focus more on patient-facing care and synthe-
sis of medical knowledge from LLM-extracted information
rather than the burden of administrative data management
[10,12,37]. This shift not only improves clinical efficiency
and cost-effectiveness but also reduces the serious risks
of burnout among clinical staff by mitigating some of the
repetitive administrative tasks associated with data handling
[11,38].

Additionally, the versatility of LLMs across different
clinical text contexts is notable. Whether dealing with
structured data formats or the myriad forms of unstructured
data present in EHRs, such as physician’s notes and diagnos-
tic reports, the general human-like natural language com-
petencies of LLMs enable these “out-of-the-box” solutions
to automatically adapt to and extract relevant information
from varied data sources. This adaptability is crucial in
precision oncology, where data from multiple data formats—
such as imaging reports, next-generation sequencing results,
and laboratory results—must be integrated and analyzed to
generate personalized patient profiles and treatment strategies
[39]. Our review highlighted that current state-of-the-art
evaluations of LLMs for data extraction in oncology have
primarily focused on clinical text as input. However, we
also highlight the recent emergence of multimodal LLMs
capable of processing both image- and text-based inputs,
serving as a new frontier for clinical decision support [40].
Taken together, future research to optimize data extrac-
tion for specific text formats in oncology—each with their
own nuances—may improve extraction accuracy, enhance
reliability, and produce results that can be trusted by
clinicians and readily inform clinical decision-making [41].

The distribution of studies included in our scoping review
reflects a predominant application of LLMs in pan-cancer
clinical domains, accounting for nearly half of all research
studies. This suggests that researchers leverage the versatil-
ity of LLMs to address broad oncological challenges across
multiple cancer types, likely due to the generalizable nature
of these models for various cancer data [42]. Breast and
lung cancer also constituted a large portion of the studies,
which can likely be attributed to their high prevalence and
extensive clinical data availability, providing a rich dataset
for deploying and testing the efficacy of LLMs [43]. The
focus on these specific cancers indicates a targeted approach,
where models are fine-tuned to address unique data extrac-
tion challenges, such as cancer type-specific nomenclature
and lexicons. This underscores the potential of LLMs to

be customized for specialized medical fields while also
highlighting their broad “out-of-the-box” utility in general
oncology. For instance, Gao et al [44] reported that Blue-
BERT did not outperform baseline nonLLM models in
pan-cancer contexts, while Fang et al [22] and Mitchell et
al (2022) [23] reported that the data extraction performance
of BERT exceeded 90% accuracy in pan-cancer contexts.
The mixed performance reported by different pilot studies of
data extraction performance within the same clinical domain
may be confounded by study-specific factors, including the
prompting methodology, benchmark dataset, and definitions
of performance metrics. These findings align with similar
reports of mixed performance across different tasks and
clinical text datasets within cancer type-specific domains
[45-47], highlighting the need for systematic benchmarks to
assess LLM data extraction reliability and domain-specific
limitations. Standardizing performance metrics and defin-
ing critical thresholds for acceptable performance of data
extraction accuracy remain open research questions to be
addressed.

Our analysis reveals an increasing trend in the use of
fine-tuning and prompt-engineering techniques in studies
on LLMs, with 16 (67%) studies incorporating fine-tuning
and 5 (21%) using prompt engineering. This progression
suggests a maturation in the application of LLMs in clinical
settings, where research has transitioned from developing
baseline models for simple data extraction to the optimi-
zation of existing models using novel model adaptations
and prompting methodologies tailored to the intricacies of
medical data extraction. Fine-tuning allows models to adapt
to the unique linguistic and contextual challenges presen-
ted by medical texts, potentially improving the accuracy
and relevance of extracted information [29]. In comparison,
prompt engineering enables the creation of more effective
queries that align closely with the specific information needs
of specialty fields such as oncology, steering LLMs toward
more precise data retrieval [48]. For instance, Huang et
al [19] demonstrated that providing LLMs with example
outputs for few-shot learning and chain-of-thought reasoning
methods for prompting yielded higher classification perform-
ance compared to baseline zero-shot applications of LLMs for
data extraction. The careful design of prompting methodol-
ogies personalized to specific tasks and clinical domains
within oncology may yield more accurate and efficient data
extraction performance [49].

Despite the promising applications of LLMs in clinical
oncology, our review also highlights notable disadvantages,
particularly in cases of poor data extraction accuracy and
performance [8,9]. Among the 24 reviewed studies, 9 (38%)
cited accuracy as a limitation of LLMs for data extrac-
tion. These shortcomings underscore the critical need for
cautious integration of LLMs into clinical workflows. The
variability in performance can be attributed to the complex
and diverse nature of clinical data, which may include
nuanced medical terminologies and varied presentation styles
across different documents [50]. These challenges empha-
size the necessity for ongoing refinement and testing of
these models under real-world conditions. Another minor
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disadvantage is the token limit of many LLMs, including
both BERT and ChatGPT [20,42,44]. This limitation may
complicate the extraction process, requiring models to be
adapted to longer texts and resulting in reduced performance
of these models [51]. Future research directions, as indica-
ted by the reviewed studies, should involve performance
benchmarks against existing statistical and machine learn-
ing–based methods and the extension of LLM tool validation
to external, hold-out cohorts from additional clinical domains
beyond those used in initial training datasets [7,16,24]. This
would help ensure that the models are robust and relia-
ble across various medical specialties and global oncology
patient populations. While LLMs hold significant potential to
revolutionize data management in oncology, their integra-
tion into clinical practice must be approached with careful
planning and systematic evaluation to truly harness their
capabilities without compromising patient care quality and
privacy. The interpretation of both advantages and disadvan-
tages of LLMs requires individualized consideration of each
study, on a case-by-case basis given the heterogeneity in
benchmark datasets, study designs, and reported outcomes.
Limitations
We acknowledge the limitations inherent in our scoping
review. First, the rapid evolution of LLM technologies means
that newer advancements may not have been fully represen-
ted in the reviewed studies due to the delays in publication
cycles, leading to the omission of recent models. Second, the
heterogeneity in study designs, datasets, and methodologies

across included articles may affect the generalizability of
findings in external contexts not evaluated in the same
conditions as the original studies. Third, the majority of
included studies originated from high-resource settings,
primarily the United States, which may limit the applicability
of results to lower-resource or structurally different health
care systems. Fourth, while the risk of publication bias was
not formally evaluated in our review, the tendency to publish
studies with positive results may overrepresent the strengths
of these LLMs without an understanding and considera-
tion of their limitations and nonpublished, negative results.
Fifth, more recent journals that publish artificial intelligence
research may not be indexed in the search databases yet,
limiting the completeness of the search results in this scoping
review. Sixth, this scoping review searched only one literature
database, which may have resulted in the omission of relevant
studies from other sources and limited the comprehensiveness
of the findings.
Conclusion
In conclusion, the application of LLMs in oncology rep-
resents a forward leap in the digital transformation of
health care data management. The potential to enhance data
extraction processes and improve clinical decision-making
is significant yet tempered by the current technological and
methodological limitations. Ongoing research and develop-
ment will be vital in harnessing the full potential of these
models, ultimately leading to their more widespread adoption
in clinical practice.
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