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Abstract
Background: Progression-free survival (PFS) is a crucial endpoint in cancer drug research. Clinician-confirmed cancer
progression, namely real-world PFS (rwPFS) in unstructured text (ie, clinical notes), serves as a reasonable surrogate
for real-world indicators in ascertaining progression endpoints. Response evaluation criteria in solid tumors (RECIST) is
traditionally used in clinical trials using serial imaging evaluations but is impractical when working with real-world data.
Manual abstraction of clinical progression from unstructured notes remains the gold standard. However, this process is a
resource-intensive, time-consuming process. Natural language processing (NLP), a subdomain of machine learning, has shown
promise in accelerating the extraction of tumor progression from real-world data in recent years.
Objectives: We aim to configure a pretrained, general-purpose health care NLP framework to transform free-text clinical
notes and radiology reports into structured progression events for studying rwPFS on metastatic breast cancer (mBC) cohorts.
Methods: This study developed and validated a novel semiautomated workflow to estimate rwPFS in patients with mBC
using deidentified electronic health record data from the Nference nSights platform. The developed workflow was validated
in a cohort of 316 patients with hormone receptor–positive, human epidermal growth factor receptor-2 (HER-2) 2-negative
mBC, who were started on palbociclib and letrozole combination therapy between January 2015 and December 2021. Ground-
truth datasets were curated to evaluate the workflow’s performance at both the sentence and patient levels. NLP-captured
progression or a change in therapy line were considered outcome events, while death, loss to follow-up, and end of the study
period were considered censoring events for rwPFS computation. Peak reduction and cumulative decline in Patient Health
Questionnaire-8 (PHQ-8) scores were analyzed in the progressed and nonprogressed patient subgroups.
Results: The configured clinical NLP engine achieved a sentence-level progression capture accuracy of 98.2%. At the patient
level, initial progression was captured within ±30 days with 88% accuracy. The median rwPFS for the study cohort (N=316)
was 20 (95% CI 18-25) months. In a validation subset (n=100), rwPFS determined by manual curation was 25 (95% CI
15-35) months, closely aligning with the computational workflow’s 22 (95% CI 15-35) months. A subanalysis revealed rwPFS
estimates of 30 (95% CI 24-39) months from radiology reports and 23 (95% CI 19-28) months from clinical notes, highlighting
the importance of integrating multiple note sources. External validation also demonstrated high accuracy (92.5% sentence
level; 90.2% patient level). Sensitivity analysis revealed stable rwPFS estimates across varying levels of missing source data
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and event definitions. Peak reduction in PHQ-8 scores during the study period highlighted significant associations between
patient-reported outcomes and disease progression.
Conclusions: This workflow enables rapid and reliable determination of rwPFS in patients with mBC receiving combination
therapy. Further validation across more diverse external datasets and other cancer types is needed to ensure broader applicabil-
ity and generalizability.
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Introduction
Background and Significance
Real-world evidence (RWE) is increasingly accepted to
augment traditional clinical trial findings to better understand
the effectiveness of oncological interventions. RWE can be
leveraged to improve novel therapy development programs
and provide better postmarket surveillance of approved
therapies [1-3].

Response evaluation criteria in solid tumors (RECIST)
is broadly used to ascertain disease progression in clinical
trials. However, assessing RECIST in retrospective elec-
tronic health record (EHR) data is challenging due to its
strict assessment indicators [4]. RECIST considers changes
in the size of individual target lesions over time and the
presence or absence of new lesions to categorize disease
status into complete or partial response, stable disease, or
progression [5]. A similar assessment paradigm is adop-
ted in routine clinical practice, where clinicians document
the occurrence of progression through serial clinical and
radiological examinations. This clinician-confirmed cancer
progression in unstructured text (ie, clinical notes) has been
shown to serve as a reasonable surrogate for real-world
indicators in ascertaining progression endpoints. This is also
more practical for real-world studies than purely RECIST-
based approaches [6].

In earlier studies across different types of solid tumors,
real-world progression (rwP) was captured either through
manual abstraction from unstructured data or proxy meas-
ures were evaluated based solely on structured drug data
[7,8]. Recent studies have also used machine learning models
specifically trained to automate the capture and characteriza-
tion of clinician documentation of tumor response. These
specialized models have shown varying accuracies [9,10].
In the past decade, health care natural language process-
ing (NLP) frameworks like Google’s Healthcare Natural
Language application programming interface (API), Amazon
Comprehend Medical, IBM Watson Health, and Microsoft
Text Analytics for Health have emerged and shown promise
in clinical concept recognition, entity linking, and sentiment
analysis. However, these general-purpose NLP frameworks
have shown varying degrees of performance on different
data sources [11-13]. While large language models (LLMs)
are rapidly advancing, they currently have limitations in
clinical concept identification and medical relation extraction

as structured outputs for direct application. Even specialized
clinical LLMs require further fine-tuning for such use cases
[14].

We aim to configure a pretrained, general-purpose health
care NLP framework to transform free-text clinical notes
and radiology reports into structured progression events. By
combining these with structured drug records and encounter
data, we will compute real-world progression-free survival
(rwPFS) for metastatic breast cancer (mBC). This work can
also guide other researchers in configuring a general-purpose
health care NLP model to capture rwPFS. Developing a
standardized and automated path for ascertaining rwP could
help scale rwPFS computation across diverse subsets of solid
tumors and maintain a better agreement across real-world
studies.
Objectives
We aim to (1) develop and validate a novel semiautomated
workflow that estimates rwPFS in patients with mBC, (2)
explore the essentiality of each model in the general-purpose
NLP framework through ablation analysis, and (3) investigate
additional factors influencing rwPFS, such as the source of
clinician-documented progressions (radiology reports versus
routine clinical notes) and the presence of prior or concurrent
medications during the observation period.

Method
Data Source
This study analyzed deidentified EHR data from a network of
tertiary clinical centers tied to an academic medical center
(Mayo Clinic) in the United States through the Nference
nSights Analytics Platform [15]. In-house tools were used
for the deidentification of EHRs. The tool performs with a
recall of 0.992 and a precision of 0.979 on the i2b2 2014
dataset at replacing protected health information (PHI) with
plausible but fictional surrogates [16]. Overall, the platform
hosts data from approximately 7 million patients from across
the United States of America, with about 1.8 million patients
having a mention of cancer across the structured data. The
platform hosts an array of multimodal data, both structured
and unstructured, such as clinical notes, radiology reports,
Digital Imaging and Communications in Medicine headers,
and pathology reports.
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Study Design and Definitions
This retrospective observational study demonstrates the
estimation of rwPFS with a workflow that integrates
clinician-reported progression events from free text (unstruc-
tured data) in clinical and radiology documents with
structured patient events like drug orders, clinic or hospi-
tal encounters, and mortality records. The workflow was
developed to leverage the pretrained, general-purpose, deep
learning–based health care NLP framework developed at
Nference called the clinical NLP engine, which enables
clinical concept recognition, sentiment analysis, and linking
associated concepts. The models that are a part of the
clinical NLP engine were initially trained on human-annota-
ted datasets, and later further augmented by additional ground
truth datasets generated by LLM agents from the same parent
EHR data source. A high-level overview of the workflow is
illustrated in Figure 1.

Figure 1. Methodology flow diagram illustrating the workflow.
(A) Workflow for real-world progression (rwP) extraction and
determining the real-world progression-free survival (rwPFS). (B) The
methodology for capturing progression from unstructured texts in routine
clinical documents and radiology reports using Nference’s clinical
NLP engine that performs clinical concept recognition, association, and
sentiment analysis. BERT: Bidirectional Encoder Representations from
Transformers; EHR: electronic health record.

Data Extraction and Augmentation
Breast cancer disease was identified using structured
diagnosis codes 174 (ICD-9 [International Classification
of Diseases, Ninth Revision]), C50 (ICD-10 [International
Statistical Classification of Diseases, Tenth Revision]),
and NLP-based positive model confirmations (augmented
curation) of the disease-related terms in clinical notes [17].
A similar approach was undertaken for identifying meta-
static disease using structured codes 197, 198 (ICD-9),
C78, and C79 (ICD-10). Further cohort attrition for the
study population is outlined in Figure 2. Hormone receptor
status, human epidermal growth factor receptor-2 (HER-2)
status, and Eastern Cooperative Oncology Group scores were
captured from clinical notes using the clinical NLP engine.
A rule-based approach was used to identify the initiation
date of first-line therapy in mBC by analyzing drug orders
and administration records. To ensure reliability, only orders
appearing for the first time after metastasis diagnosis were
included. The same methodology was extended to identify
second-line therapies.

Figure 2. Cohort attrition diagram: structured codes 174* (ICD-9)
and C50* (ICD-10) or >4 positive disease sentiments from the
augmented curation disease diagnosis model were used for breast
cancer. For evidence of metastasis, 197*, 198* (ICD-9), C78*, and
C79* (ICD-10) in conjunction with augmented curation were used; *
represents all the children codes within the parent code. ECOG: Eastern
Cooperative Oncology Group; EHR: electronic health record; HER-2:
human epidermal growth factor receptor-2; HR: hormone receptor;
ICD-9: International Classification of Diseases, Ninth Revision; ICD-10:
International Statistical Classification of Diseases, Tenth Revision; NLP:
natural language processing.

Patient Population
The study cohort (N=316) consisted of female patients
aged ≥18 years and diagnosed with mBC with hormone
receptor–positive and HER-2–negative status with confirmed
concurrent exposure to palbociclib and letrozole from January
1, 2015, to December 31, 2021 (study period), and with
Eastern Cooperative Oncology Group performance scores of
less than 3 around the start of the therapy (±60 d).

Demographics and baseline characterization of the study
cohort, such as prior exposure to therapies, disease stage at
the start of the study, stage at first cancer diagnosis, and other
relevant metrics for the solid tumor of interest, were also
documented.
Extracting Progression Events From
Unstructured Text
To develop and evaluate our workflow, an initial rule-defini-
tion set of 200 cases from the overall mBC cohort (N=10,791)
was sampled, and a preliminary manual abstraction was
performed. This evaluation aimed to systematically identify
a set of rules for configuring the baseline clinical concept
extraction model to capture progression. Authors PKM, SKR,
VK, and MM used internal clinical document (CD) explora-
tion tools to cluster sentences based on initial pattern matches
and iteratively refined these clusters to identify progres-
sion-indicative phrases. Independent reviews of oncology
and radiology notes were conducted to extract commonly
occurring phrases indicative of clinical progression. Authors
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GV and RHY subsequently collated these identified patterns
into a set of regex search patterns. These patterns were
tested on clinical notes to ensure they captured the appropri-
ate progression-related contexts while removing duplicate or
irrelevant verbatim such as general report headers, unrela-
ted phrases (eg, “CR” for complete response or “PD” for
progressive disease without patient-specific context), and
noise. Downstream NLP models were applied to validate
the extracted patterns by mapping the right set of label
combinations that accurately reflected the progression status.
This process was repeated iteratively until a consensus was
reached among the authors, ensuring a robust set of rules for
capturing progression events. The final progression capture
configuration is detailed in Table S1 in Multimedia Appendix
1.

The rwP events were captured by configuring the clinical
NLP engine. This baseline workflow is an ensemble of
deep learning–based multi-BERT (Bidirectional Encoder
Representations from Transformers) framework trained on
unstructured patient data like CDs and radiology reports to
perform named entity recognition and predict the sentiment
labels for subject, temporality, and certainty of the captured
named entities [18]. The ensemble also infers associations
between related entities like disease-severity, drug-disease,
and disease-anatomical_structure, among others. These
proprietary models are fine-tuned versions of SciBERT-cased
[19], a domain-specific transformer model pretrained on
scientific text. The base models underwent further supervised
fine-tuning for classification tasks on annotated sentences
from CD texts of the overall Nference nSights database, but
not specifically on the mBC patient note database. The details
regarding their architecture, training, and performance of the
individual models of the clinical NLP engine are detailed in
Note S1 and Table S2 in Multimedia Appendix 1. The clinical
NLP engine also uses a section header model to identify the
clinical note sections from which the named entities were
captured. The rules determined during the initial abstraction
were used to capture cancer progression.

rwP Definitions
rwP events were identified by the earliest documentation
of disease progression in a clinical or radiology note or
by advancement to a new line of therapy. The addition
of a new chemotherapy, endocrine therapy, or targeted
therapy drug after 60 days of exposure to the initiat-
ing therapy of interest is considered line advancement.
The following list of drugs were considered potential
second-line drug candidates in the study period: tamoxi-
fen, fulvestrant, elacestrant, paclitaxel, carboplatin, abemaci-
clib, docetaxel, cyclophosphamide, capecitabine, ribociclib,
alpelisib, everolimus, doxorubicin, epirubicin, 5-fluorouracil,
olaparib, talazoparib, ixabepilone, raloxifene, and toremifene.
Censoring events included death, loss of follow-up, and the
end of the observation period. Progression events captured
within the first 30 days of therapy initiation were excluded
as they occurred too early to reflect treatment effectiveness.
The rwPFS was also assessed with variations in the origin of
unstructured data, comparing radiology reports and CDs as

data sources. The key contributing survival variables used for
rwPFS were also stratified to understand the source of events.
Progression Capture Validation

Overview
For validation of the clinical progression captures, the manual
review and abstraction were performed at 2 levels.

The raw progression captures were evaluated for accu-
racy independent of their temporality to the observation
period. 1000 captures were sampled from the overall pool
of progression captures for the sentence-level progression
capture analysis.

A stratified sample (mBC validation set; n=100) was
selected from the overall study cohort (N=316) to match
the progression event occurrence observed in the overall set.
This approach ensures that the sample mirrors the broader
cohort’s characteristics for a valid comparison in patient-level
evaluation for progression capture. These patients were not
part of the initial rule-definition set and were evaluated for
their first progression events. For the patient-level analysis,
the elements of the confusion matrix were defined to account
for temporality. We classified the captures into 4 categories:
(1) true positives: automated progression captured is within
±30 days of manual capture; (2) false positives: progres-
sion was not found through manual capture, but automated
progression was captured at any time or automated progres-
sion was captured >30 days before manual capture; (3) true
negatives: progression was not found through manual review,
nor was picked up by automated capture; and (4) false
negatives: progression was identified through manual capture,
but the automated method has not identified any progression
(or) automated method captured progression >30 days after
the date captured by manual review.

Ablation Analysis of the Progression Capture
Pipeline
To evaluate the contribution of each workflow component
to the overall performance, an ablation study was performed
at 5 strategic points: (1) temporal model ablation, that is,
the removal of the temporality assessment model; (2) subject
model ablation, that is, the removal of the subject assessment
model; (3) certainty model ablation, that is, the certainty
assessment model was removed; (4) all 3 assessment models
were removed; and (5) postprocessing ablation where the
postprocessing steps, specifically the exclusion of specific
note sections and dropping subsequent duplicate mentions of
the same note contexts, were removed. Each ablation was
analyzed in isolation to quantify its respective contribution
to the final output’s accuracy, aiding in identifying critical
components of the pipeline and potential areas for optimiza-
tion. This step is further illustrated in Figure S2 in Multime-
dia Appendix 1.
Validation on the External Dataset
To further assess the generalizability and robustness of
the progression capture pipeline, external validation was
performed using data from a different partner academic
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medical center (AMC). In the external dataset, 63 mBC
patients on first-line therapy of the metastatic disease
with palbociclib with or without aromatase inhibitors were
identified for this analysis (see Figure S4 for cohort attri-
tion in Multimedia Appendix 1). Similar NLP-based data
augmentation techniques were applied on the external dataset
for cohort identification. The proposed progression extraction
workflow was applied on the external dataset for extraction
of progression events during the defined study period (60
months) of the patients. For validation, similar to the primary
cohort, a 2-tier approach was applied, including sentence-
level and patient-level validation. For patient-level valida-
tion, the time of the first progression event in the patient
cohort was manually abstracted and validated. Performance
metrics such as precision, recall, accuracy, and F1-score were
calculated to evaluate the alignment of automated progression
captures with manual annotations.
Sensitivity Analysis on rwPFS Estimates
Two sensitivity analyses were conducted to assess the
robustness of rwPFS estimates: (1) to evaluate the effect of
data incompleteness, 10%, 20%, and 30% of rows capturing
progression events (missingness at random) were systemati-
cally removed from the Kaplan-Meier source data. Median
rwPFS and survival probabilities were descriptively analyzed
to quantify variations introduced by missing records. (2)
The impact of treating death as a progression event ver-
sus censoring was assessed by generating Kaplan-Meier
curves under both scenarios. Differences were evaluated
using the log-rank test, with comparisons of median rwPFS
and survival probabilities at predefined time points. These
analyses ensured the robustness of rwPFS estimates by
addressing potential biases from data structure and event
definitions.
Patient-Reported Outcomes and Clinical
Progression: Analysis Using the Patient
Health Questionnaire-8
Patient-reported outcomes (PROs) were integrated by
analyzing Patient Health Questionnaire-8 (PHQ-8) scores
to complement clinician-documented progression events.
Cumulative declines and peak reductions in PHQ-8 scores
were compared between progressed and nonprogressed
patients using a t test. Peak reduction was determined as
the largest decrease observed between any 2 recorded scores
during the study period. Cumulative decline, representing the
total improvement over time, was calculated as the sum of
all positive reductions (decline in PHQ-8 value) in scores
across all pairwise comparisons during the study period. This
approach aimed to provide a holistic perspective by linking
patient-reported mental health outcomes to clinical progres-
sion.
Outcomes Assessment
The primary outcome was rwPFS, calculated as the time
between the start of the intervention of interest and the first
rwP event captured or a change in the line of therapy for
the patient. The secondary outcome was real-world overall
survival (rwOS), calculated as the time between the start of

the intervention of interest and the date of death. A subgroup
analysis was performed to assess the impact of prior and
other concomitant medications on rwPFS and rwOS in the
metastatic setting. The validation metrics of the primary
outcome were reported as sensitivity, specificity, accuracy,
precision, and F1-scores.

Median follow-up time was computed from the date of the
start of therapy till their last encounter in the EHR system.
Time to treatment after the diagnosis of advanced disease
(first evidence of metastasis) and follow-up after the start of
therapy were imputed using the date of the first evidence of
metastasis (identified by structured disease code or NLP-pos-
itive confirmation) and the date of the first structured drug
order for the combination therapy (palbociclib and letrozole)
as the anchor dates, respectively.
Ethical Considerations
This study analyzed deidentified primary patient-level data
extracted from the Nference’s, nSights electronic health
record database under a data-use agreement that obviates
the need for additional institutional review board review.
Nference, in collaboration with the AMC data partner that
provided the deidentified data for this study, has established a
secure data environment, hosted by and within the AMC, that
houses the AMC’s deidentified patient data. The provision-
ing of and access to this data are governed by an expert
determination that satisfies the Health Insurance Portabil-
ity and Accountability Act Privacy Rule requirements for
the deidentification of PHI. Each AMC’s deidentified data
environment is specifically designed and operated to enable
access to and analysis of deidentified data without the need
for institutional review board oversight, approval, or an
exemption confirmation. Participants retain the right to opt
out at any time. The data are accessible only to authorized
users subject to a robust credentialing and authentication
process. Data shown and reported in the manuscript have
been extracted from this environment using an established
protocol for data extraction, aimed at preserving patient
privacy. The data have been deidentified pursuant to an
expert determination in accordance with the Health Insur-
ance Portability and Accountability Act Privacy Rule. No
compensation was provided to individuals whose deidentified
records were included.
Statistical Analysis
Data hosted on Nference’s nSights environment were
imported on demand into the secure code workspaces
deployed with Python (version 3.10.6). Missing data
imputation was not undertaken. The analysis workflow uses
proprietary Python packages with APIs for database querying
and data standardization. The descriptive statistics were
reported as n (%) and median, IQR. Loss to follow-up was
considered as a censoring event for survival estimates. The
Kaplan-Meier estimator from the lifelines package 0.27.7 was
used in this analysis. The median rwPFS and rwOS were
reported, with a 95% CI.
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Results
Workflow Configuration
We applied 3 selection conditions to ensure that the pro-
gression captures from the clinical NLP engine are rele-
vant and up-to-date with the patient’s current status with
respect to the clinical note or report. First, entities labeled
with “YES,” “PATIENT,” and “CURRENT,” each having
a sentiment prediction confidence of ≥0.9, were deemed
relevant. Second, to address the issue of “copy-forwarding”
in clinical notes, only the first chronological instance of
each extracted sentence was retained. Finally, sentences from
“Past History” sections were excluded, as they are unlikely
to reflect events occurring at the time of documentation. The
workflow configuration is illustrated in Figure 1.

Performance Evaluation
The accuracy of the progression capture was evaluated at 2
levels (Table 1): in level 1, sentence-level progression capture
validation yielded an accuracy of 98.2% for the relevant
progression captures, and in level 2, patient-level validation
yielded an accuracy of 88.0%. Ablation analysis revealed the
essentiality of the individual components of the clinical NLP
engine for progression capture and selection conditions. All
steps except the subject sentiment model labels substantially
contribute to the overall model performance. This model can
be disabled and the workflow performance remains the same.
The patient-level workflow performance at each ablation step
is outlined in Table 2.

Table 1. Manual validation was performed for progression at 2 levels.
Values

Progression capture analysis in level 1a (manual validation of sampled raw progression captures [n=1000])
Sensitivity 99.8%
Specificity 96.7%
Precision 96.6%
Accuracy 98.2%
F1-score 98.2

First progression capture analysis in level 2b (manual validation of first progression [n=100])
Sensitivity 92.5%
Specificity 83.0%
Precision 86.0%
Accuracy 88.0%
F1-score 89.1

aLevel 1: sentence-level review to validate the capture of progression sentiments at the sentence level. At this level, we reviewed the extracted
sentences to ascertain the validity of the progression capture at a sentence level.
bLevel 2: patient-level review to identify the first progression date. Here, we undertook a full review of patient records to ascertain the first
progression capture of the metastatic disease.

Table 2. Output of the ablation analysis showcasing the performance metrics at each step.
Validation against manually abstracted patient-level dataset (N=100)

Accuracy (%) Sensitivity (%) Specificity (%)
Median PFSa (months), value
(95% CI)

Overall workflow 88.0 92.5 83.0 20 (18‐26)
Temporal model ablation 79.0 91.5 67.9 19 (15‐23)
Subject model ablation 88.0 92.5 83.0 20 (18‐26)
Certainty model ablation 42.0 100 20.5 7 (6-8)
All 3 sentiment models ablated 35 100 15.6 6 (5-7)
Postprocessing ablation 87.0 96.2 76.6 19 (16‐23)

aPFS: progression-free survival.

Cohort Description
The baseline characteristics are detailed in Table 3. The
median age at metastasis was 59 (IQR 50.5‐69) years. The
median follow-up time after metastasis diagnosis was 43.3
(IQR 28.1‐61.2) months and the median follow-up time after
the start of the therapy was 39.8 (IQR 25.5‐57.9) months.

The starting dose of palbociclib and letrozole was availa-
ble for 53.2% and 61%, respectively. The median number
of drug orders for palbociclib and letrozole was 6 (IQR
3‐12) and 4 (IQR 2‐7), respectively. The treatment charac-
teristics, including prior and concomitant exposure to other
chemotherapy agents and a history of prior radiotherapy and
breast surgery, are also detailed in Table 3. The breakdown
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of outcomes and censoring events that contributed to the
Kaplan-Meier survival estimates are further detailed in Table
4.

Table 3. Study cohort characteristics.
Category and variable Overall mBCa cohort (N=316) mBC validation set (n=100)
Demographics

Age at metastasis (y), median (IQR) 59 (50.5‐68.2) 59.1 (47.8‐69.2)
Female gender, n (%) 316 (100) 100 (100)

Ethnicity, n (%)
Not Hispanic or Latino 298 (94.3) 94 (94)
Hispanic or Latino 11 (3.5) 3 (3)
Unknown or choose not to disclose 7 (2.2) 3 (3)

Race, n (%)
Caucasian 293 (92.8) 95 (95)
Asian 6 (1.8) 1 (1)
African American or other 17 (5.4) 4 (4)

Tumor markers, n (%)
HR-positiveb 316 (100) 100 (100)
ER-positivec and PR-positived 223 (70.6) 68 (68)
ER-positive and PR-negative 27 (8.5) 11 (11)
PR-positive and ER-negative 50 (15.8) 15 (15)
ER, PR status unknown 16 (5.1) 6 (6)
HER-2/neu-negativee 316 (100) 100 (100)

Disease severity, n (%)
Patients with confirmed stage IV [−30,+30] within 30 d of primary
diagnosisf 196 (61.1) 62 (62)

ECOGg performance score <3 316 (100) 100 (100)
Disease-related follow-up, median (IQR)

Follow-up after metastasis (months) 43.3 (28.1‐61.2) 50.8 (38.6‐64.2)
Treatment, n (%)

Prior systemic therapy 22 (7.5) 6 (6)
Prior radiotherapy 125 (39.5) 38 (38)
Prior surgical resection 128 (40.5) 37 (37)
Other concomitant systemic therapy 36 (11) 6 (6)

Treatment follow-up, median (IQR)
Follow-up after start of treatment in months 39.8 (25.5‐57.9) 48.6 (37.8‐61.4)
Time to treatment after advanced disease diagnosis in months 0.5 (0.2‐1.7) 0.6 (0.2‐1.7)

amBC: metastatic breast cancer.
bHR: hormone receptor
cER: estrogen receptor.
dPR: progesterone receptor.
eHER-2: human epidermal growth factor receptor-2.
fAll patients included in the study are stage 4 cancer. The provided numbers represent those diagnosed within the stated period.
gECOG: Eastern Cooperative Oncology Group.

Table 4. Breakdown analysis of outcomes and censoring events in the mBCa cohort.
Source of capture Events, n (%)
Breakdown of progression events (n=199)

The first event is a progression capture from the pooled sources (n=152)
Radiology Reports 78 (51.3)
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Source of capture Events, n (%)

Clinical documents 74 (48.7)
The first event is the start of a second-line drug (n=47)

Capecitabine 13 (27.7)
Everolimus 11 (23.4)
Abemaciclib 9 (19.1)
Ribociclib 9 (19.1)
5-Fluorouracil 3 (6.4)
Olaparib 1 (2.1)
Cyclophosphamide 1 (2.1)

Breakdown of censoring events (n=117)
Last encounter date 76 (65)
Patient death date 22 (18.8)
End of study period 19 (16.2)

amBC: metastatic breast cancer.

Outcomes
In the study cohort (N=316), 199 (62.9%) patients progressed
during the observation period (60 mo starting from Jan 1,
2015). Out of the progressed patients, 152 (48.1%) were
based on progression captures from unstructured data, and

47 (14.8%) were based on changes in the line of therapy from
structured data. The median rwPFS for the overall cohort was
20 months (95% CI 18.0‐25.0; Figure 3A). The median rwOS
was not reached during the study period (95% CI 57- not
reached [NR]).

Figure 3. Kaplan-Meier survival plots for the overall study cohort and validation sets: (A) Kaplan-Meier survival plots indicating the real-world
progression-free survival (rwPFS) and real-world overall survival (rwOS) in the study cohort of patients with metastatic breast cancer using pooled
note sources. (B) Patient-level validation of first progression capture and comparing outcomes estimated by computational workflow with manual
curation. mBC: metastatic breast cancer.

In the mBC validation set of 100 patients, the median rwPFS
was determined to be 25 (95% CI 15-35) months by manual
curation and 22 (95%CI 15-35) months by the computational
workflow outlined in Figure 3B. Based on the data source

for progression capture, the rwPFS estimated exclusively
from radiology reports was 30 (95% CI 24.0-39.0) months,
compared to 23 (95% CI 19.0-28.0) months when estima-
ted exclusively from CDs, as represented in Figure 4.
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Subgroup analysis on the rwPFS based on prior or concomi-
tant therapies is detailed in Figure 5.

Figure 4. Kaplan-Meier survival plots for real-world progression-free survival (rwPFS) based on the patient note source. Survival plots indicating the
real-world rwPFS with progressions captured from solitary sources of radiology reports (RR) and routine clinical documents (CD). mBC: metastatic
breast cancer.
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Figure 5. Kaplan-Meier survival curves for subgroup analysis. Each of the subgroups account for different variations in treatment patterns. The
survival curves and risks table showcase the effect of other prior or concomitant systemic therapies on the median real-world progression-free
survival (rwPFS).

External Dataset Validation
External validation was conducted using data from a partner
AMC, representing a health system distinct from the main
study, to assess the generalizability and robustness of the
progression capture pipeline. At Level 1, manual valida-
tion of 200 sampled raw progression captures achieved an
accuracy of 92.5% and an F1-score of 92.8%, while Level 2

validation of the first progression in 61 patients reported an
accuracy of 90.2% and an F1-score of 92.5%. Two patients
were excluded from performance metrics because the textual
evidence identified during manual abstraction of the first
progression event was unavailable to the automated extrac-
tion pipeline. Comprehensive performance metrics, including
sensitivity, specificity, and F1-scores, are detailed in Table 5.

Table 5. Manual validation of the progression capture workflow on the external dataset.
Validation step Sensitivity Specificity Accuracy Precision F1-score
Level 1
  Manual validation of sampled raw progression captures

(n=200)
89.7% 95.7% 92.5% 96% 92.8%

Level 2
  Manual validation of first progression (n=61) 97.4% 78.3% 90.2% 88.1% 92.5%

Sensitivity Analysis on rwPFS Estimates
The sensitivity analysis demonstrated that rwPFS estimates
were robust under varying conditions. Systematic removal
of 10%, 20%, and 30% of progression events resulted in

median rwPFS values of 20 (95% CI 18-26) months, 20
(95% CI 18-27) months, 22 (95% CI 18-28) months, and
23 (95% CI 19-29) months for the complete, 10%, 20%,
and 30% datasets, respectively, with widening CIs indicat-
ing increased uncertainty. Similarly, median rwPFS estimates
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were comparable when death was treated as censorship versus
a progression event, with values of 20 months (95% CI
18-25) and 18 months (95% CI 15-21) in the main dataset.
These findings, along with overlapping CIs, indicate that the
rwPFS estimates were not meaningfully affected by miss-
ing data or event definitions. See Figure S5 in Multimedia
Appendix 1 for Kaplan-Meier curves and event tables.

PHQ-8 Outcomes and Disease
Progression
Of the 316 patients, 94 had at least 2 PHQ-8 scores recor-
ded during the study period, including 30 nonprogressed
and 64 progressed patients. Nonprogressed patients showed
greater mean peak reduction (5.57, SD 5.90 vs 2.95, SD 4.30;
t92=−2.397, P=.02) and cumulative decline (mean 8.00, SD
12.68 vs 3.66, SD 6.40; t92=−2.201, P=.03) in PHQ-8 scores
compared to progressed patients. See Table S3 in Multimedia
Appendix 1 for details.

Discussion
Overview
The study showcases the development and validation of
a novel semiautomated workflow for estimating rwPFS in
patients with mBC using deidentified EHRs. One of its
key strengths lies in the integration of NLP techniques to
extract clinician-reported progression events from unstruc-
tured data sources such as clinical notes and radiology
reports, combined with structured patient data like drug
orders and clinical encounters. This approach enhances the
accuracy and comprehensiveness of capturing progression
events, as evidenced by the high sensitivity (99.8%) and
specificity (96.7%) at the sentence level with good patient-
level accuracy (88%).

While our initial goal was to develop a fully automa-
ted workflow for capturing disease progression, we have
successfully implemented a semiautomated approach. This
is advantageous because the semiautomated method allows
for disease-specific adjustments to clinical concept recogni-
tion configurations, ensuring relevance across various cancer
types. This flexibility underscores the potential for broader
applicability beyond mBC, making it a valuable tool for
oncological research and RWE generation.
Principal Findings
The median rwPFS of 20 months (95% CI 18‐25) repor-
ted in this study is comparable to those reported in previ-
ous real-world studies and clinical trial results, validating
the workflow’s reliability and accuracy [20,21]. Subgroup
analysis revealed the impact of prior and other concomitant
medications on median rwPFS. For instance, the PALOMA-2
trial reported a median progression-free survival (PFS) of
24.8 months (95% CI 22.1-inf), which is comparable to
the real-world observation in the study subcohort (N=260)
of patients who received palbociclib and letrozole in the
first-line metastatic setting (patients with no other prior
or concomitant drugs), which was 23.00 months [22]. A

matched comparison between the study cohort and other
real-world cohorts or clinical trials could further establish
the concordance between the survival estimates. Integrating
progression events from both radiology reports and routine
clinical or oncology notes standardizes the identification of
disease progression, mitigating biases and overestimation
that can arise from relying exclusively on a single data
source. Ablation analysis also revealed the futility of using
the subject sentiment analysis model in the workflow, as
physicians are unlikely to describe the progression status of
a family member or a blood relative in the patient’s notes.
While this model is useful for extracting other concepts using
the clinical NLP engine, it has shown no benefit in its usage
for progression capture.

The external validation further demonstrated the robust-
ness and generalizability of the progression capture workflow
across health systems. Manual validation on this dataset also
achieves high accuracy at the sentence level (92.5%) and
at capturing the first progression event (90.2%). Sensitiv-
ity analysis confirmed that rwPFS estimates were stable,
regardless of whether death was treated as censorship or an
event, with overlapping CIs observed across both scenar-
ios. Sensitivity analysis confirmed that rwPFS estimates
were stable across varying levels of missing data and event
definitions, with slight increases in median rwPFS and wider
CIs under data incompleteness and overlapping intervals
when treating death as censorship or an event. Furthermore,
integration of PHQ-8 outcomes revealed significant associ-
ations between patient-reported mental health and progres-
sion status, highlighting the potential of PROs to provide
complementary insights.
Comparison to Prior Work
The study also highlights the importance of source data used
for determining rwPFS. Relying solely on radiology reports
overestimated the median rwPFS compared to estimates
derived from both clinical notes and radiology reports
combined. The median rwPFS from the pool of free-text data
excluding radiology reports (23 months) was closer to the
median survival of the overall study cohort with all avail-
able pooled free-text data (20 months) when compared to
the median rwPFS computed from free-text data exclusively
from radiology reports (30 months). This discrepancy can
be explained by the observation that patients can undergo
radiological evaluations outside the EHR data network, with
their findings being documented by treating physicians within
the EHR network in patients’ routine clinical notes. Similar
findings were observed in a previous study that analyzed
the impact of source data on real-world survival estimates
[6]. Additionally, relying solely on structured data like drug
records (time to discontinuation or time to next treatment)
as a surrogate for rwPFS has been shown to underestimate
the median rwPFS substantially in a prior study [23]. PROs
provide direct insight into a patient’s symptoms and quality
of life and have been linked to progression-free and over-
all survival in prior studies. Although direct comparisons
with alternative workflows were not performed, our method
demonstrates performance metrics that are in line with those
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reported in previous studies, warranting further comparative
analyses in future work.

Among other computational techniques for characterizing
cancer response in real-world data (RWD), the use of LLMs
has also shown promise. A prior study evaluating this has
shown GatorTron to be the best-performing model, achiev-
ing an accuracy of 89% at the radiology report level upon
fine-tuning [24]. However, applying LLMs across a broader
patient corpus needs further investigation to fully ascertain
their validity and generalizability. PROs provide direct insight
into a patient’s symptoms and quality of life and have been
linked to progression-free and overall survival in prior studies
[25-27]. We have observed significant associations between
the decline in PHQ-8 scores and the patient’s progression
status.
Limitations
There are, however, limitations to this study. First, the
reliance on clinician-reported events means that the accu-
racy of the workflow is reliant on the quality and complete-
ness of clinical documentation. Incomplete or inconsistent
documentation could lead to underestimation or overestima-
tion of progression events. To mitigate this, careful validation
of extraction patterns and data completeness checks were
implemented. Second, although the semiautomated workflow
reduces the resource-intensive nature of manual abstraction,
it requires initial manual rule definition and configuration,
which could introduce biases based on the selected rules
and criteria. Representative evaluation samples were curated
across the breast cancer cohorts to reduce the biases. Third,
sensitivity analyses were limited primarily to variations in
clinical text sources and censoring definitions. Expanding
sensitivity analyses to include demographic factors, alterna-
tive definitions of progression, and data-source reliability
could further strengthen the robustness of the findings.
Fourth, augmenting the mortality data with commercial and
federal death registries could enhance the accuracy of survival
estimates. This was not feasible in the present analysis but
represents an important area for future improvement. Fifth,
integration of PROs could provide a more comprehensive
understanding of patient well-being in relation to progression

events. However, demonstrating this in RWD was challeng-
ing due to the limited availability of patient-reported records.
Finally, the ensemble deep learning engine’s performance
was evaluated within a specific cohort of mBC patients;
thus, further validation across more diverse external datasets
and different cancer types is necessary to truly establish the
generalizability of the workflow.
Future Directions
These findings align with the growing body of research
advocating for integrating artificial intelligence and machine
learning in health care data analysis, as these technologies
can substantially enhance the speed, accuracy, and breadth
of data processing capabilities. Future work will explore
more advanced text data analysis and extraction methods,
such as adaptive machine learning techniques and LLMs,
to minimize manual import and enhance scalability. Further-
more, by using federated learning, insights and patterns from
diverse populations across various institutions can be pooled
securely, enriching the model’s generalizability and perform-
ance across different health care settings. The successful
implementation of this automated workflow demonstrates
its potential to streamline the data extraction process from
EHRs from various health systems. It also paves the way
for its application in other oncological studies, where similar
challenges in data abstraction exist.
Conclusions
Developing a practical and scalable method for capturing
real-world progression from EHR data is crucial to improving
oncological research and patient care. Overall, this technol-
ogy represents a step forward in realizing the full potential
of EHR data in oncology. Our findings establish a workflow
for automated data capture to provide a more efficient and
scalable method than traditional manual processes, particu-
larly in handling complex, unstructured EHR data. Although
the principles of progression capture remain the same across
other cancer types, further research across other types of
solid tumors is needed to ascertain the generalizability of the
workflow.
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