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Abstract
Background: Breast cancer is the most prevalent form of cancer worldwide, with 2.3 million new diagnoses in 2022. Recent
advancements in treatment have led to a shift in the use of chemotherapy-targeted immunotherapy from a postoperative
adjuvant to a preoperative neoadjuvant approach in select cases, resulting in enhanced survival outcomes. A pathological
complete response (pCR) is a critical prognostic marker, with higher pCR rates linked to improved overall and disease-free
survival.
Objective: The objective of this study was to develop robust, machine learning–based prediction models for pCR following
neoadjuvant therapy, leveraging clinical, laboratory, and imaging data.
Methods: A retrospective cohort study was conducted using data from the Taipei Medical University Clinical Research
Database from 2015 to 2022. Eligible patients were those with breast cancer who received neoadjuvant therapy followed by
curative surgical resection. Machine learning models were developed using 3 distinct sets of variables. Model 1 included
14 clinical features such as age, height, weight, tumor stage, receptor status, tumor markers, and intrinsic subtype. Model
2 expanded on this by incorporating additional laboratory data and comorbidities (29 variables in total). Model 3 added
breast sonography response data to the clinical variables in model 1. Algorithms including logistic regression, random forest,
support vector machines, and extreme gradient boosting were used. Feature selection was performed using recursive feature
elimination with cross-validation, and model performance was assessed using accuracy and area under the receiver operating
characteristic curve (AUROC).
Results: A total of 334 patients were analyzed, with 199 in the non-pCR group and 135 in the pCR group. The application of
logistic regression with recursive feature elimination with cross-validation was found to demonstrate the optimal performance
among the various algorithms that were evaluated in this study. Model 1 attained a mean accuracy of 0.66 (SD 0.02) and a
mean AUROC of 0.73 (SD 0.01). The incorporation of laboratory data and comorbidities in model 2 did not yield significant
enhancement, with a mean accuracy of 0.67 (SD 0.02) and a mean AUROC of 0.73 (SD 0.01). The incorporation of breast
sonography response in model 3 led to a modest enhancement in predictive performance for the sonography group (accuracy
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0.68; AUROC 0.60) in comparison to the nonsonography group (accuracy 0.66; AUROC 0.55). Despite the modest sample
size (41 patients) of model 3, the integration of sonography data appeared to offer additional value in predicting pCR and
warrants further investigation.
Conclusions: This study suggests that incorporating breast sonography into models with clinical and laboratory data may
modestly improve pCR prediction. It is important to note that the findings of this study are preliminary and require cautious
interpretation. Further studies are required to validate this approach and support its integration into a machine learning–based
clinical workflow.
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Introduction
Breast Cancer and Treatment Strategies
Breast cancer is the most prevalent cancer worldwide, with
approximately 2.3 million women diagnosed and 670,000
deaths reported in 2022 [1]. In Taiwan, the disease is also the
most prevalent form of cancer among women, with an annual
incidence of 15,000 new cases [2]. Treatment strategies
for breast cancer are highly personalized, encompassing
surgery, chemotherapy, targeted therapy, immunotherapy,
hormone therapy, and radiotherapy [3,4]. Historically, the
sequence of chemotherapy, targeted therapy, and immuno-
therapy was implemented as an adjuvant treatment following
surgery. However, in certain circumstances, it is now used
as neoadjuvant therapy, administered prior to surgery, to
optimize outcomes [5].
The Role and Advantages of Neoadjuvant
Therapy
Neoadjuvant therapy confers a number of clinical advantages,
including the potential to reduce the size of the tumor, thereby
enabling breast-conserving surgery in patients who might
otherwise require mastectomy. This approach also provides
a critical window to monitor tumor regression and assess
pathological responses, which are strongly correlated with
improved overall survival and disease-free survival [6-8]. It
is imperative to acknowledge that the efficacy of neoadju-
vant therapy exhibits substantial intrinsic subtype variability,
underscoring the necessity for subtype-specific therapeutic
strategies.

Current guidelines recommend neoadjuvant therapy for
patients with ≥ cT2 or cN(+) luminal-type breast cancer
and ≥ cT1c, cN0 human epidermal growth factor receptor 2
(HER2)-positive or triple-negative breast cancer (TNBC) [9].
In the context of HER2-positive breast cancer, the Adju-
vant Paclitaxel and Trastuzumab trial has demonstrated the
efficacy of a de-escalated regimen of TH (paclitaxel and
trastuzumab) for 12 cycles in achieving excellent outcomes
for lower-risk patients [10]. In the context of TNBC,
the incorporation of carboplatin into standard neoadjuvant
chemotherapy has been shown to result in a substantial
enhancement in pathological complete response (pCR) rates
[11]. Moreover, the addition of pembrolizumab in conjunc-
tion with chemotherapy has been observed to further augment
pCR rates and event-free survival, particularly in cases
classified as high risk [12].

An accurate assessment of tumor response is impera-
tive for the optimization of neoadjuvant therapy strategies.
Previous studies have investigated a multitude of factors
to predict pCR in patients with breast cancer undergo-
ing neoadjuvant therapy [13]. Imaging modalities, such as
breast sonography, are valuable for evaluating tumor size
and margins, with a sensitivity of 61% and specificity of
78% [14]. Breast sonography plays a pivotal role in assess-
ing response during treatment and complementing clinical
examination, which remains a reliable and accessible method
for evaluating palpable lesions. This dual approach enables
the timely identification of nonresponders, who can then be
spared the adverse effects of ineffective chemotherapy and
redirected to alternative therapeutic strategies with potentially
greater efficacy [15].

Despite the variability in pCR rates (10%‐60%) across
different breast cancer intrinsic subtypes, accurate prediction
of pCR using a combination of clinical features, imag-
ing techniques, and pathology remains critical for tailoring
treatment and improving outcomes [16,17].
Study Objective
The objective of this study is to develop a user-friendly
prediction model for pCR after neoadjuvant therapy by
integrating clinical features, advanced machine learning
techniques, and breast sonography data. The implementa-
tion of such a model has the potential to facilitate the
early identification of nonresponders, thereby enabling timely
therapeutic adjustments and averting the administration
of ineffective treatments. The ultimate implementation of
this model in clinical practice could enhance personalized
treatment plans, improve patient outcomes, and optimize
health care resource use.

Methods
Study Design and Data Source
This retrospective cohort study used data from the Taipei
Medical University Clinical Research Database (TMU-CRD),
an electronic medical record system established in 2015.
The dataset used in this study was exclusively derived from
the TMU-CRD, which consolidates data from 3 affiliated
academic hospitals: Taipei Medical University Hospital,
Wan Fang Hospital, and Shuang Ho Hospital. The data-
base is managed and maintained by these academic centers,
ensuring high data quality and reliability. The TMU-CRD
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encompasses both structured data, including patient dem-
ographics, International Classification of Diseases codes,
laboratory results, treatment procedures, medication records,
and cancer registry entries, as well as unstructured data,
comprising physician notes, imaging reports, and pathological
reports. As of 2024, the database encompasses data from
1998 to 2022 and contains the medical records of nearly 4.3
million patients across Taiwan.
Patient Selection
The population of this study included patients diagnosed
with breast cancer who underwent neoadjuvant therapy
followed by curative-intent surgical resection. Patients were
identified using a specific label in the cancer registry that
indicated neoadjuvant treatment. Exclusion criteria encom-
passed instances where chemotherapy records were incom-
plete, where chemotherapy was not administered prior to
surgery, and the presence of metastatic disease. Following the
application of these criteria, a final cohort of 334 patients was
identified for the purposes of analysis.
Data Collection
A comprehensive dataset, encompassing clinical and imaging
parameters, was meticulously collected to develop predic-
tive models for pCR. The demographic variables included
age, height, and weight, clinical tumor size, clinical TNM
stage, hormone receptor (estrogen receptor [ER] or proges-
terone receptor [PR]) status, HER2 status, Ki-67 expres-
sion, breast cancer intrinsic subtype, Nottingham Bloom
Richardson (NBR) grading, carcinoembryonic antigen (CEA)
levels, carbohydrate antigen 15‐3 (CA15-3) levels, labora-
tory test results, and comorbidities. The intrinsic subtypes
of breast cancer were categorized as hormone receptor-posi-
tive, HER2-positive, and triple-negative. The evaluation of
imaging data, specifically breast sonography responses, was
conducted based on Response Evaluation Criteria in Solid
Tumors criteria and categorized into complete response,
partial response, stable disease, or progression disease. The
pathological response was classified as complete response
(ypT0/Tis and ypN0) or residual disease.

The Allred scoring system was used to determine hormone
receptor (ER or PR) status. The assessment of HER2 status
was conducted through immunohistochemistry, and cases that
yielded a score of 2+ underwent additional evaluation via
fluorescence in situ hybridization. The TNM staging was
determined according to the American Joint Committee on
Cancer guidelines.
Machine Learning Models
Three models were constructed for the development of
machine learning models to predict pCR. Model 1 consis-
ted of 14 clinical parameters, including age, height, weight,
BMI, tumor size, clinical N stage, ER status, PR status,
HER2 status, Ki-67 expression, NBR grading, CEA levels,
CA15-3 levels, and breast cancer intrinsic subtype. Model 2
expanded upon model 1 by incorporating additional labora-
tory test results and comorbidities, resulting in a total of 29
variables. Model 3 included the parameters from model 1 and
integrated breast sonography response data as an additional

feature. Due to limited sonography data availability, this
dataset included only 41 patients. Model 2 expanded upon
model 1 by incorporating additional laboratory test results and
comorbidities, resulting in a total of 29 variables.
Statistical Analysis and Machine Learning
Approach
Univariate analysis was performed using 2-tailed t tests and
chi-square tests to identify significant differences between the
pCR and non-pCR groups. Features that exhibited statis-
tical significance (P<.05) and those that were supported
by existing literature were selected for model construction.
Missing values were addressed through the implementation of
imputation methods, with mean imputation being applied to
continuous variables and an additional category being created
for categorical variables. With regard to missing values, we
excluded variables for which more than 30% of data points
were missing.

The performance of the model was evaluated using
accuracy and the area under the receiver operating character-
istic curve (AUROC). The AUROC is a metric that quan-
tifies a model’s ability to distinguish between 2 classes
(eg, pCR vs non-pCR) by plotting the true positive rate
(sensitivity) against the false positive rate (1−specificity)
at various thresholds. An AUROC value of 1.0 indicates
perfect classification, while a value of 0.5 represents no better
performance than random chance. The College of American
Pathologists asserts that an area under the curve below 0.6
indicates inadequate discriminative ability, values between
0.6 and 0.75 suggest beneficial discrimination, and values
above 0.75 reflect substantial clinical utility. It is therefore
generally recommended that an AUROC of at least 0.6 is
attained for a prognostic model if its use in clinical settings
for the prediction of cancer outcomes is to be considered
beneficial [18].

The 3 models were analyzed using the following algo-
rithms: logistic regression (LR), random forest, support
vector machine, and extreme gradient boosting. The feature
selection process was optimized through the implementation
of recursive feature elimination with cross-validation. The
training and testing datasets were partitioned into 80% and
20% of the total data, respectively, with the exception of
model 3, where leave-one-out cross-validation (LOO-CV)
was used due to the limited sample size. To interpret
the importance of breast sonography in model 3, Shapley
Additive Explanations (SHAP) were used. The SHAP values
were computed using the SHAP Python package in order
to quantify the contribution of each feature to the model’s
output. The mean absolute SHAP value was used to summa-
rize feature importance, and the median rank of sonography
response was calculated by comparing its importance across
all features for each prediction. The performance of each
model was evaluated using accuracy and AUROC metrics.
Ethical Considerations
The study was reviewed and approved by the institutional
review board (IRB) of Taipei Medical University, Taipei,
Taiwan (IRB N202305036). The study entailed secondary
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analysis of deidentified data procured from the Taipei
Medical University Clinical Research Database. In accord-
ance with the regulations established by the IRB and the
institutional policy, the requirement for informed consent
was waived due to the fact that no personally identifia-
ble information was accessed. The research was conducted
in accordance with the ethical standards outlined in the
Declaration of Helsinki. The participants did not receive any
form of financial compensation, and no direct interaction
occurred between the participants and the investigators. The
maintenance of data privacy and confidentiality was strictly
enforced throughout the study.

Results
Basic Characteristics
We identified 334 patients from the 3 hospital datasets.
These patients were stratified into 2 groups based on their

pCR status: the non-pCR group, comprising 199 (59.5%)
individuals, and the pCR group, comprising 135 (40.4%)
individuals. Univariate analysis revealed significant differ-
ences between the 2 groups in several clinical parame-
ters, including tumor size, clinical T stage, ER status, PR
status, HER2 status, Ki-67 expression, breast cancer intrinsic
subtype, CA15-3 levels, and hemoglobin concentrations.
However, no significant differences were observed in age,
BMI, clinical N stage, overall clinical stage, NBR grading, or
CEA levels (Table 1).

Table 1. Demographic data according to pCRa (N=334).
Non-pCR (n=199) pCR (n=135) P valueb

Age (years), mean (SD) 53.6 (11.5) 52.4 (10.5) .35
Height (cm), mean (SD) 157.1 (5.6) 157.1 (6.1) .93
Weight (kg), mean (SD) 60.2 (10.7) 60.1 (11.7) .90
BMI, mean (SD) 24.4 (4.4) 24.4 (4.8) .93
Clinical tumor size (mm) .01

Mean (SD) 47.9 (26.5) 40.4 (22.8)
Missing, n (%) 4 (2) 7 (5.1)

Clinical T stage, n (%) .01
T1 16 (8) 13 (9.6)
T2 100 (50.3) 88 (65.2)
T3 53 (26.6) 18 (13.3)
T4 30 (15.1) 16 (11.9)

Clinical N stage, n (%) .29
N0 42 (21.1) 39 (28.9)
N1 126 (63.3) 73 (54.1)
N2 22 (11.1) 19 (14.1)
N3 9 (4.5) 6 (4.4)

Stage, n (%) .15
1 4 (2) 4 (3)
2 108 (54.3) 86 (63.7)
3 87 (43.7) 45 (33.3)

ERc, n (%) <.001
Positive 134 (67.3) 61 (45.2)
Negative 65 (32.7) 74 (54.8)

PRd, n (%) <.001
Positive 117 (58.8) 44 (32.6)
Negative 82 (41.2) 91 (67.4)

HER2e, n (%) <.001
Positive 66 (33.2) 89 (65.9)
Negative 133 (66.8) 46 (34.1)
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Non-pCR (n=199) pCR (n=135) P valueb

Ki-67 <.001
Mean (SD) 39 (22.6) 49.1 (22.6)
Missing, n (%) 18 (9) 10 (7.4)

Subtype, n (%) <.001
HRf (+) 100 (50.3) 21 (15.6)
HER2 (+) 66 (33.2) 89 (65.9)
TNBCg 33 (16.6) 25 (18.5)

NBRh, n (%) .25
0 4 (2) 0 (0)
1 79 (39.7) 56 (41.5)
2 40 (20.1) 26 (19.5)
Missing 76 (38.1) 53 (39.3)

CEAi .12
Mean (SD) 10.7 (44.6) 4.2 (7.3)
Missing, n (%) 29 (14.5) 16 (11.8)

CA15-3j .04
Mean (SD) 21.3 (37.8) 14 (9.7)
Missing, n (%) 32 (16) 18 (13.3)

WBCk .34
Mean (SD) 7.12 (2.0) 7.34 (2.2)
Missing, n (%) 36 (18.1) 16 (11.8)

Hemoglobin <.001
Mean (SD) 12.7 (1.7) 13.2 (1.3)
Missing, n (%) 35 (17.6) 16 (11.8)

Platelet .93
Mean (SD) 268.4 (77.2) 269.2 (62.6)
Missing, n (%) 38 (19.1) 16 (11.8)

Lymphocyte .99
Mean (SD) 27.0 (7.7) 27.0 (9.5)
Missing, n (%) 55 (27.6) 22 (16.2)

Neutrophil .80
Mean (SD) 63.3 (8.6) 63.6 (10.7)
Missing, n (%) 55 (27.6) 22 (16.2)

BUNl .92
Mean (SD) 12.7 (5.4) 12.8 (4.1)
Missing, n (%) 26 (13.1) 18 (13.3)

Creatinine .51
Mean (SD) 0.72 (0.5) 0.68 (0.2)
Missing, n (%) 19 (9.5) 14 (10.3)

GOTm .89
Mean (SD) 22.4 (11.4) 22.6 (11.8)
Missing, n (%) 40 (20.1) 19 (14.1)

GPTn .59
Mean (SD) 21.6 (19.1) 22.8 (21.2)
Missing, n (%) 32 (16.1) 14 (10.3)

Diabetes, n (%) .89
Yes 10 (5) 7 (5.2)
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Non-pCR (n=199) pCR (n=135) P valueb

No 170 (85.4) 127 (94.1)
Missing 19 (9.5) 1 (0.7)

Hypertension, n (%) .19
Yes 23 (11.6) 11 (8.1)
No 157 (78.9) 123 (91.1)
Missing 19 (9.5) 1 (0.7)

Heart disease, n (%) .83
Yes 1 (0.5) 1 (0.7)
No 179 (99) 133 (98.5)
Missing 1 (0.5) 1 (0.7)

Kidney disease, n (%) .08
Yes 4 (2) 0 (0)
No 176 (88.4) 134 (99.3)
Missing 19 (9.5) 1 (0.7)

Asthma, n (%) .83
Yes 1 (0.5) 1 (0.7)
No 179 (89.9) 133 (98.5)
Missing 19 (9.5) 1 (0.7)

Hepatitis B, n (%) .91
Yes 5 (2.5) 4 (3)
No 175 (88) 130 (96.3)
Missing 19 (9.5) 1 (0.7)

apCR: pathological complete response.
bP values are based on univariate analysis results using 2-tailed t tests and chi-square tests.
cER: estrogen receptor.
dPR: progesterone receptor.
eHER2: human epidermal growth factor receptor 2.
fHR: hormone receptor.
gTNBC: triple-negative breast cancer.
hNBR: Nottingham Bloom Richardson.
iCEA: carcinoembryonic antigen.
jCA15-3: carbohydrate antigen 15-3.
kWBC: white blood cell.
lBUN: blood urea nitrogen.
mGOT: glutamic oxaloacetic transaminase.
nGPT: glutamic pyruvic transaminase.

Although breast sonography response did not achieve
statistical significance in univariate analysis, a trend toward

a higher pCR rate was observed in patients demonstrating
superior sonography response (Table 2).

Table 2. Breast sonography responses with complete response and partial response are more likely to predict a pathological complete response (pCR)
in final pathological result.
Sonography response Non-pCR (n=28), n (%) pCR (n=13), n (%)
Complete response 2 (7.1) 3 (23.1)
Partial response 13 (46.4) 8 (61.5)
Stable disease 12 (42.9) 2 (15.4)
Progression disease 1 (3.6) 0 (0)

Machine Learning Features and
Algorithms
The model 1 was analyzed using 6 machine learn-
ing algorithms, with LR incorporating recursive feature

elimination and cross-validation demonstrating the best
performance, yielding a mean accuracy of 0.66 (SD 0.02) and
a mean AUROC of 0.73 (SD 0.01; Table 3).
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Table 3. Performance of the predication model for models 1 and 2.
Algorithm Accuracy, mean (SD) AUROCa, mean (SD)
Model 1
  RFb 0.60 (0.02) 0.62 (0.04)
  LRc 0.66 (0.01) 0.72 (0.02)
  SVMd 0.60 (0.02) 0.64 (0.04)
  XGBe 0.63 (0.02) 0.67 (0.03)
  LR with RFECVf 0.66 (0.02)g 0.73 (0.01)
  XGB with RFECV 0.65 (0.02) 0.70 (0.01)
Model 2
  RF 0.61 (0.02) 0.64 (0.03)
  LR 0.66 (0.02) 0.72 (0.02)
  SVM 0.59 (0.01) 0.59 (0.05)
  XGB 0.64 (0.01) 0.68 (0.02)
  LR with RFECV 0.67 (0.01) 0.73 (0.01)
  XGB with RFECV 0.66 (0.03) 0.72 (0.01)

aAUROC: area under the receiver operating characteristic curve.
bRF: random forest.
cLR: logistic regression.
dSVM: support vector machine.
eXGB: extreme gradient boosting.
fRFECV: recursive feature elimination with cross-validation.
gThe values in italics format indicate that LR with RFECV demonstrated the best performance among all evaluated algorithms.

In model 2, additional variables, including laboratory test
results and comorbidities, were integrated with the clinical
parameters from model 1, resulting in a total of 29 variables.
However, the inclusion of these additional variables did not
significantly improve predictive performance, with a mean
accuracy of 0.67 (SD 0.02) and a mean AUROC of 0.73 (SD
0.01; Table 3).

In model 3, the incorporation of breast sonography
response data into the variables from the first model resulted
in a dataset comprising 15 variables. Due to the limited

sample size, the analysis used the LR algorithm with LOO-
CV. The findings demonstrated that the incorporation of
sonography response enhanced the predictive accuracy of the
model, with an accuracy of 0.68 and an AUROC of 0.60
for the sonography group, as opposed to an accuracy of
0.66 and an AUROC of 0.55 for the nonsonography group.
Furthermore, a SHAP value for sonography response was
0.62 (Figure 1), and the median rank of sonography response
was 5 (IQR 3-7) among all samples in model 3 (Figure 2).
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Figure 1. SHAP value for (A) without or (B) with breast sonography. CA15-3: carbohydrate antigen 15‐3; CEA: carcinoembryonic antigen; ER:
estrogen receptor; HER2: human epidermal growth factor receptor 2; NBR: Nottingham Bloom Richardson; PR: progesterone receptor; SHAP:
Shapley Additive Explanations.
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Figure 2. Boxplot illustrating the ranking of sonography response across all samples in model 3. The median rank of sonography response was 5
(IQR 3-7).

Subsequent analysis of specific samples in model 3 was
undertaken to investigate the value of sonography response
(Figure 3). In sample 14, the predicted and true results
were non-pCR; however, most variables predicted pCR, with
only the sonography response correctly indicating non-pCR,

aligning with the final result. A similar pattern was observed
in samples 12, 26, and 27, where the predicted results
were incongruent with the true outcomes; nevertheless, the
sonography response accurately reflected the actual results.
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Figure 3. Selected samples from model 3 highlighting the significance of sonography response in prediction accuracy. In sample 14, the true
and predicted results were non-pCR, but most variables incorrectly predicted pCR—except for the sonography response, which correctly indicated
non-pCR. Similarly, in samples 12, 26, and 27, the predicted results were opposite to the actual outcomes; yet, the sonography response correctly
aligned with the true results. CA15-3: carbohydrate antigen 15‐3; CEA: carcinoembryonic antigen; ER: estrogen receptor; HER2: human epidermal
growth factor receptor 2; NBR: Nottingham Bloom Richardson; pCR: pathological complete response; PR: progesterone receptor; SHAP: Shapley
Additive Explanations.

Discussion
The objective of this study was to develop machine
learning–based models to predict pCR in patients with
breast cancer receiving neoadjuvant therapy, using clinical,
laboratory, and imaging data. Three models were subjected to
a rigorous testing process, and their predictive performance
was thoroughly evaluated.

Principal Findings
Model 1 incorporated clinical parameters alone, yielding an
AUROC of 0.73. Model 2, which added laboratory data and
comorbidities, demonstrated no significant improvement over
model 1. Model 3, which incorporated a further integra-
tion of breast sonography response, demonstrated a modest
enhancement in its predictive performance. This enhancement
was characterized by an increase in AUROC from 0.55 to
0.60 and an increase in accuracy from 0.66 to 0.68. Further-
more, SHAP analysis indicated that sonography response
contributed significantly to the model, ranking fifth among all
the features considered. In some cases, sonography response
aligned with true outcomes, despite the failure of other

variables to do so. These findings indicate the potential
value of incorporating imaging data into prediction models
to enhance individualized treatment strategies.
Comparison to Prior Work
The predictive performance of model 1 is consistent with that
reported in previous studies, which used clinical parame-
ters alone and reported AUROCs ranging from 0.65 to
0.77 [13,19-21]. The limited incremental value observed in
model 2 is consistent with the findings in the literature
that laboratory and comorbidity variables may not independ-
ently enhance prediction unless integrated with molecular
or genetic data [21]. This study’s finding that breast sonog-
raphy provides added predictive value is consistent with
previous evidence highlighting the clinical utility of imaging
in assessing tumor response, as demonstrated in model 3.

The observed pCR rates for the different intrinsic subtypes
(HER2-positive, TNBC, and hormone receptor–positive) also
reflect established trends in neoadjuvant therapy responsive-
ness [12,22-25].
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Challenges With Small Sample Size and
Machine Learning Approaches
Despite extensive data mining, only 41 cases with sonography
response data were available for model 3, thereby limiting the
sample size and potentially increasing the risk of overfitting.
To address this issue, we used an LR model with LOO-CV, a
method that has been demonstrated to be particularly effective
when dealing with small datasets. Initially, algorithms such as
support vector machines (and decision trees were consid-
ered; however, imbalances in the dataset led to classification
bias, which resulted in the adoption of more straightforward
LR models. It is recommended that future research endeav-
ors place a priority on the acquisition of more substantial
datasets with a view to enhancing the model’s robustness and
mitigating the risk of overfitting [26,27].
Clinical Implications
The predictive models developed in this study have prac-
tical applications in clinical decision-making. Specifically,

model 1, which uses only baseline clinical data, facilitates
initial treatment planning by predicting the likelihood of
pCR subsequent to a decision to proceed with neoadjuvant
therapy. The third model, which incorporates midtreatment
sonography response, enables dynamic reassessment of pCR
probability, facilitating timely adjustments to therapeutic
strategies, such as switching to alternative treatments or
surgical interventions. The integration of machine learning
into standard clinical workflows may offer potential benefits
for improving outcomes in breast cancer care (Figure 4).
Given the small sample and lack of validation, the prediction
model has not reached clinical maturity, and it is therefore not
prudent to make recommendations regarding its application.

Figure 4. Conceptual flowchart outlining a potential application of the prediction model to support clinical decision-making. This framework is
intended for illustrative purposes only and does not represent a validated clinical tool. pCR: pathological complete response.

Strengths and Limitations
A significant strength of this study is its multimodal
approach, integrating clinical, laboratory, and imaging data
within machine learning models. The use of SHAP values
enhances interpretability and facilitates the identification of
relevant predictors, including sonography response.

However, it is important to note several limitations of
this study. First, the sample size for model 3 was limited
(n=41), thereby restricting statistical power and increasing

the risk of overfitting. To mitigate this issue, the LOO-
CV and LR methods were applied. Second, the data extrac-
ted from semistructured reports may have been subject to
inconsistencies. Despite the evident benefits of text mining
in enhancing the quality of the results, the use of standar-
dized data collection methods in future studies would be a
preferred approach. Third, the models did not include genetic
or molecular biomarkers, which may limit their predictive
performance. Fourth, as a retrospective, single-center study,
there is a risk of selection bias and limited generalizability.
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Variables with over 30% missing data were excluded, a
process that potentially resulted in the omission of important
predictors. Furthermore, the absence of external validation of
the model is a notable shortcoming.
Future Directions
Future research endeavors should explore the integration
of genomic, molecular, and radiomic data to further refine
prediction models. Conducting prospective, multi-institutional
studies with larger and more diverse patient cohorts is
imperative to validate findings and support generalizability.
Standardizing imaging report formats and leveraging natural
language processing tools may also enhance data quality for
imaging-based predictors. Consequently, these advancements
have the potential to facilitate the development of robust

clinical decision-support tools, thereby optimizing neoadju-
vant treatment planning in breast cancer care.
Conclusions
This study provides preliminary insight into the potential
role of breast sonography response data in improving pCR
prediction for patients with breast cancer receiving neoadju-
vant therapy. The clinical and laboratory parameters that were
provided served as a useful foundation for the models, and the
addition of imaging data appeared to offer modest improve-
ments in predictive accuracy. However, given the relatively
small sample size, these findings should be interpreted with
caution. The incorporation of imaging data into clinical
workflows could potentially represent a valuable step toward
the development of more personalized treatment approaches.
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