
Original Paper

Predicting Early-Onset Colorectal Cancer in Individuals
Below Screening Age Using Machine Learning and Real-
World Data: Case Control Study

Chengkun Sun1, MS; Erin Mobley2,3, PhD; Michael Quillen4, MD; Max Parker4, MD; Meghan Daly3, MD; Rui
Wang5, PhD; Isabela Visintin3, MD; Ziad Awad3, MD; Jennifer Fishe6, MD; Alexander Parker2,7, PhD; Thomas
George2,4, MD; Jiang Bian8, PhD; Jie Xu1, PhD
1Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States
2University of Florida Health Cancer Center, University of Florida, Gainesville, FL, United States
3Department of Surgery, University of Florida, Jacksonville, FL, United States
4Department of Medicine, University of Florida, Gainesville, FL, United States
5Center for Data Solutions, University of Florida, Jacksonville, FL, United States
6Department of Emergency Medicine, University of Florida, Jacksonville, FL, United States
7College of Medicine, University of Florida, Jacksonville, FL, United States
8Indiana University Indianapolis, Indianapolis, IN, United States

Corresponding Author:
Jie Xu, PhD
Department of Health Outcomes and Biomedical Informatics, College of Medicine
University of Florida
1889 Museum Road, Office 7020
Gainesville, FL, 32611
United States
Phone: 1 3526279467
Email: xujie@ufl.edu

Abstract
Background: Colorectal cancer is now the leading cause of cancer-related deaths among young Americans. Accurate early
prediction and a thorough understanding of the risk factors for early-onset colorectal cancer (EOCRC) are vital for effective
prevention and treatment, particularly for patients below the recommended screening age.
Objective: Our study aims to predict EOCRC using machine learning (ML) and structured electronic health record data for
individuals under the screening age of 45 years, with the aim of exploring potential risk and protective factors that could
support early diagnosis.
Methods: We identified a cohort of patients under the age of 45 years from the OneFlorida+ Clinical Research Consortium.
Given the distinct pathology of colon cancer (CC) and rectal cancer (RC), we created separate prediction models for each
cancer type with various ML algorithms. We assessed multiple prediction time windows (ie, 0, 1, 3, and 5 y) and ensured
robustness through propensity score matching to account for confounding variables including sex, race, ethnicity, and birth
year. We conducted a comprehensive performance evaluation using metrics including area under the curve (AUC), sensitivity,
specificity, positive predictive value, negative predictive value, and F1-score. Both linear (ie, logistic regression, support
vector machine) and nonlinear (ie, Extreme Gradient Boosting and random forest) models were assessed to enable rigorous
comparison across different classification strategies. In addition, we used the Shapley Additive Explanations to interpret the
models and identify key risk and protective factors associated with EOCRC.
Results: The final cohort included 1358 CC cases with 6790 matched controls, and 560 RC cases with 2800 matched controls.
The RC group had a more balanced sex distribution (2:3 male-to-female) compared to the CC group (2:5 male-to-female),
and both groups showed diverse racial and ethnic representation. Our predictive models demonstrated reasonable results, with
AUC scores for CC prediction of 0.811, 0.748, 0.689, and 0.686 at 0, 1, 3, and 5 years before diagnosis, respectively. For RC
prediction, AUC scores were 0.829, 0.771, 0.727, and 0.721 across the same time windows. Key predictive features across both
cancer types included immune and digestive system disorders, secondary malignancies, and underweight status. In addition,
blood diseases emerged as prominent indicators specifically for CC.
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Conclusions: Our findings demonstrate the potential of ML models leveraging electronic health record data to facilitate the
early prediction of EOCRC in individuals under 45 years. By uncovering important risk factors and achieving promising
predictive performance, this study provides preliminary insights that could inform future efforts toward earlier detection and
prevention in younger populations.
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Introduction
Colorectal cancer (CRC) is a significant public health
challenge, ranking as the third leading cause of cancer-rela-
ted mortality among both males and females in the United
States [1]. It is estimated that in 2023, approximately 153,020
individuals were diagnosed with CRC, and 52,550 succum-
bed to the disease [1]. While cancer is typically a disease
of older age, a concerning trend has emerged—the increas-
ing incidence of early-onset colorectal cancer (EOCRC) in
individuals younger than the age of 50 years [1,2]. This
increased incidence has led the US Preventive Services Task
Force to modify its recommendations, lowering the age
to start CRC screening to age 45 [3]. Patients diagnosed
with EOCRC tend to present at later stages and face lower
disease-specific survival rates, underscoring the need for
early detection and treatment initiation [4]. Nevertheless,
challenges in addressing EOCRC are compounded by poorly
defined risk factors and the role of diagnostic delays. As
a result, early prediction and comprehensive understanding
of the risk factors of EOCRC are essential for prevention
and treatment, particularly for patients who fall below the
recommended screening age.

The rapid integration of artificial intelligence and big data
analytics has significantly expanded the horizons of medical
research and clinical care [5]. Diverse data sources, including
imaging and genomic data, have been harnessed for CRC
detection through the application of statistical and machine
learning (ML) algorithms. Some approaches have included
the analysis of tumor DNA and circulating RNA expression
profiling data to identify potential pathogenic factors [6,7].
In addition, computer tomography (CT)–based radionics,
combined with ML algorithms, have been used to predict
the Kirsten rat sarcoma viral oncogene mutation in people
with CRC, demonstrating the potential of ML in clinical
decision support [8]. Further, a random forest (RF) model
trained with standard clinical and pathological prognostic
variables, coupled with magnetic resonance imaging (MRI)
images, achieved an impressive area under the curve (AUC)
score of 0.94 when predicting survival in CRC patients,
highlighting the importance of MRI-based texture features
in patient survival prediction [9]. However, imaging data
produces a small number of unexplainable predictors (around
100), and does not consistently improve diagnostic accuracy
and disease prediction, especially when only using imaging
data [10]. Furthermore, advanced imaging modalities and
genomic data can be costly, with limited accessibility, and
lack diversity and representativeness in samples, which could
impact timely and accurate diagnosis for all individuals

affected by EOCRC or widen already present disparities in
patient outcomes.

In contrast to imaging and genomic data, structured data
from the electronic health record (EHR) offers a more
accessible and cost-effective data source for initial research.
Originally designed for administrative and billing purposes,
structured EHR data have evolved into valuable tools for
health care research, capturing a wealth of patient informa-
tion, including clinical diagnoses, procedures, medications,
and laboratory results, among others [11]. The integration
of ML and deep learning with EHR data has demonstra-
ted substantial potential for disease prediction, including
Alzheimer disease, gestational diabetes mellitus, and coronary
heart disease [12-14]. In the context of CRC, several ML
approaches have been used to predict the risk of the disease.
For example, Shanbehzadeh et al [15] used structured EHR
data and four data mining algorithms to predict CRC risk,
identifying critical attributes for the prediction model using
the weight statistical χ2 test. However, the weight statistical
χ2 test assumes independence among variables, which may
not hold true in complex datasets where variables are likely
correlated. Another study leveraged convolutional neural
networks to predict CRC risk based on the structured EHR
data from the Taiwan National Health Insurance database
[16]. Hussan et al [17] explored multiple ML methods to
construct predictive models for CRC among patients aged
between 35 and 50 years. However, these studies faced
challenges in effectively matching cases and control groups,
leading to increased bias and concerns regarding confound-
ing. Furthermore, another limitation across studies is the
failure to distinguish between colon cancer (CC) and rectal
cancer (RC), despite the differences in clinical presentation,
molecular carcinogenesis, pathology, surgical topography and
procedures, and multimodal treatment strategies between
these 2 cancers [18]. In addition, the lack of model explan-
ations regarding clinical diagnosis of CRC undermined the
interpretability and reliability of their strategies. As a result,
there is a pressing need for improved methodologies to
enhance the reliability and understanding of ML models in
EOCRC prediction.

Methods
Data Source and Study Population
This study used deidentified EHR data from the OneFlorida+
Clinical Research Consortium, which operates within the
PCORnet Clinical Research Network funded by the Patient-
Centered Outcomes Research Institute. PCORnet serves as a
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national resource dedicated to advancing high-priority health
research and improving outcomes through a robust, integra-
ted research infrastructure [19,20]. By combining extensive
health data, research expertise, and patient perspectives,
it enables network partners to rapidly generate reliable,
actionable evidence to support public health and clinical
decision-making [19,20]. The OneFlorida+ data encompasses
a wide range of patient characteristics from health systems
across the southeast, including EHR data collected using the
PCORnet Common Data Model [19] regarding demographics,
diagnoses, medications, procedures, vital signs, lab tests, and
more.

The construction of our study cohort using OneFlorida+
is outlined in Figure 1. OneFlorida+ identified individuals

from the OneFlorida+ network, with encounters from January
2012 to January 2023 who met our inclusion criteria as
either a case or control. We identified cases of CC using
the International Classification of Diseases, Ninth Revision
(ICD-9) code of C18.x or C49A4 or the International
Classification of Diseases, Tenth Revision (ICD-10) code of
153.x, or RC cases with the ICD-9 code of C19.x, C20.x,
C21.0, C21.1, and ICD-10 code of 154.0 and 154.1. The
initial cohort consisted of 68,293 CRC cases (54,939 CC
cases and 29,592 RC cases), and 589,823 controls. From
those, we excluded patients diagnosed with both CC and RC,
other previous cancers, or those who were diagnosed ≥45
years of age. Our final study cohort comprised 1358 CC cases
with 25,485 controls and 560 RC cases with 22,648 controls.

Figure 1. Flowchart of patient selection from OneFlorida+. CC: colon cancer; CRC: colorectal cancer; RC: rectal cancer; AV: Ambulatory Visit.

We used an incident matching process to match cases and
controls to ensure a fair comparison across these groups.
Initially, we retained cases and controls with more than 2
years of records and at least 2 encounters before the first
onset date of either CC or RC and ensured that the age gap
between matched cases and controls was within 2.5 years.
By calculating propensity scores based on race, ethnicity, sex,
and birth year (within 2.5 y), we used a narrow caliper of 0.05
with a nearest neighbor approach to achieve a 1:5 case-to-
control ratio for each prediction window group [21]. This

rigorous methodology ensures a balanced study population
for reliable analysis and EOCRC prediction.
Study Setting
We then incorporated a range of different observation periods
and prediction windows (Figure 2) to test our prediction
algorithms, considering the different use cases. We consid-
ered 4 different prediction windows: 0 years, 1 year, 3 years,
and 5 years before CRC diagnosis.
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Figure 2. Visualization of the observation and prediction windows. For the prediction task. The index date for CRC cases is the date of diagnosis. For
the control group, the index date is defined as the closest encounter date to the diagnosis date of the matched case group. The prediction window is
the time period before the index date during which CRC cases are predicted. The observation window refers to the specific period during which data
is collected or observed for analysis. CRC: colorectal cancer.

Data Preprocessing
The predictors we extracted included data from the dem-
ographics, vitals, diagnoses, medications, and procedures
tables within the OneFlorida+ Clinical Research Network
throughout the observation periods. Age at index date was
calculated and categorized into 3 groups (eg, 18‐29 y, 30‐39
y, and 40‐44 y). One-hot encoding [22] was used to repre-
sent age groups, race, and sex variables. Statistical analysis
shows that the proportion of missing values is approximately
50% (4137/8148 in CC and 1554/3360 in RC). Accord-
ing to [23-25], mean imputation is less sensitive to high
proportions of missing data and is more robust compared
to other imputation methods, such as median and mode
imputations, the indicator method, and regression. Thus,
for missing data, we imputed the missing values with the
mean of the numerical data derived from the entire sample
within each prediction window group. Furthermore, BMI data
was categorized into clinically relevant groups, including
underweight (≤18.5 y), normal (18.5‐23 y), overweight
(23-30 y), and obese (≥30). Diastolic and systolic measure-
ments were categorized into distinct hypertension stages.

Diagnoses, which were initially represented using ICD-9
and ICD-10 codes, were subjected to a data dimensionality
reduction process that mapped them into Phecodes [26,27].
Revenue codes and current procedural terminology codes
[28] were leveraged to capture billed medical procedures.
To integrate these data, we also used the clinical classifi-
cations software code [29]. For drug information, National
Drug Code [30] and RxNorm codes were used for encod-
ing. National Drug Codes were mapped into RxNorm codes,
and further consolidated into anatomical therapeutic chemical
classes [31]. To ensure completeness, all features that
could not be mapped were retained to prevent any missing
information. These steps to transform the data enhanced
interpretability and relevance of our predictive models.
Experiments and Validation
We explored several widely used ML models, including
linear models such as logistic regression (LR) and the

support vector machine (SVM), as well as nonlinear models
like XGBoost (Extreme Gradient Boosting) and RF. We
adopted two modeling strategies, including (1) prediction
without CRC-related features and (2) prediction without
cancer-related features, covering the CRC-related features.
For the first strategy, features that may be indicative of CRC
differential diagnoses (eg, neoplasm of unspecified nature
of digestive system) or treatments for CRC (eg, chemother-
apy and radiotherapy) were removed from the models and
not used as predictors. For the second strategy, we took a
more stringent approach by eliminating all diagnoses, drugs,
and procedures that could be associated with any cancer
from the extracted predictors. This step aimed to identify
risk factors while eliminating the influence of other types of
cancers, enabling us to focus exclusively on noncancer-rela-
ted predictors. Regardless of the feature engineering strategy,
we maintained a consistent experimental setup. The entire
dataset was randomly split into a training dataset and a testing
dataset with a ratio of 4:1. Model optimization was conducted
on the training set through 5-fold cross-validation, and we
fine-tuned hyperparameters using Bayesian optimization. To
ensure reproducibility, we fixed the random state seed across
all model runs.

To assess the effectiveness of our models comprehen-
sively, we used a battery of evaluation metrics, including
AUC, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and F1-score. To mitigate
the risk of overfitting and to derive robust CIs, we implemen-
ted a bootstrapping strategy. This involved conducting 100
experiments by randomly resampling the training and testing
datasets. In addition to traditional performance metrics, we
delved into the interpretability of the XGBoost models.
Specifically, we computed Shapley Additive Explanations
(SHAP) values [32] to gain insights into the inner work-
ings of the ML algorithms and to identify the core contribu-
tion predictors. This approach aimed to unveil the high-risk
factors associated with EOCRC, shedding light on the most
influential features in our prediction model. To further assess
generalizability, we performed temporal validation on all
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CC and RC groups, using data before January 1, 2015,
for training and data after for testing. We then trained an
XGBoost model to evaluate its performance on the test set.
Ethical Considerations
The study was approved and the requirement to obtain
any informed consent was waived by the University
of Florida Institutional Review Board (protocol number
IRB202201561). The research does not involve greater than
minimal risk for participation. Analyses only involve the
secondary analysis of data that are either limited datasets
or deidentified. Our research team has no direct contact
with human participants. All methods were carried out in
accordance with relevant guidelines and regulations.

Results
Table 1 provides an overview of the identified study cohorts
after propensity score matching for both CC and RC across

various prediction windows. Notably, CC cases outnumber
RC cases, with approximately twice as many CC cases.
Patients in the RC groups were slightly older compared to
those in the CC group. Sex distribution in the RC groups was
closer to parity (2:3 male to female) than in the CC group (2:5
male to female). Both RC and CC groups exhibited diverse
racial and ethnic representation. In addition, as the predic-
tion window lengthened, the number of cases decreased.
Specifically, there were 560, 560, 383, and 225 RC cases, and
1358, 1358, 884, and 532 CC cases in prediction windows for
0 years, 1 year, 3 years, and 5 years, respectively.

Table 1. Descriptive statistics in case and control groups.

Variables
CCa cases
(n=1358)

CC controls
(n=6790)

RCb cases
(n=560)

RC controls
(n=2800)

Age, mean (SD) 36.54 (5.88) 36.69 (5.73) 37.70 (5.70) 36.80 (5.53)
  Sex, n (%)
   Female 938 (69.07) 4461 (65.70) 323 (57.68) 1617 (57.75)
   Male 420 (30.93) 2329 (34.30) 237 (42.32) 1183 (42.25)
Race and ethnicity, n (%)
  Hispanic 338 (24.89) 1527 (22.49) 101 (18.04) 514 (18.36)
  Non-Hispanic White 554 (40.80) 2893 (42.61) 239(42.68) 1212 (43.29)
  Non-Hispanic Black 353 (25.99) 1857 (27.35) 178 (31.79) 887 (31.68)
  Other 14 (1.03) 66 (0.97) 4 (0.71) 9 (0.32)
  Unknown 99 (7.29) 447 (6.58) 38 (6.79) 178 (6.36)
Vital Signs, missing rate, n (%)
  BMI 475 (34.98) 3393(49.97) 171 (30.54) 1383 (49.39)
  Diastolic blood pressure 559 (41.16) 3578 (52.70) 236 (42.14) 1497 (53.46)
  Systolic blood pressure 573 (42.19) 3618 (53.28) 240 (42.86) 1517 (54.18)
Top 10 diagnoses, n (%)
  Other tests 1016 (74.82) 5010 (73.78) 45 (8.04%) 83 (2.96)
  Abdominal pain 881 (64.87) 3430 (50.52) 133 (23.75) 611 (21.82)
  Other symptoms of respiratory system 630 (46.39) 2873 (42.30) 92 (16.43) 189 (6.75)
  Overweight, obesity and other hyperalimentation 585 (43.08) 2915 (42.93) 46 (8.21) 187 (6.68)
  Nausea and vomiting 581 (42.78) 2095 (30.85) 29 (5.18) 87 (3.11)
  Nonspecific chest pain 536 (39.47) 2250 (33.14) 133 (23.75) 347(12.39)
  Tobacco use disorder 523 (38.51) 2408 (35.46) 55 (9.82) 121 (4.32)
  Acute upper respiratory infections of multiple or

unspecified sites
522 (38.44) 2817 (41.49) 1 (0.18%) 4 (0.4)

  Other anemias 512 (37.7) 1454 (21.41)) 157 (28.04) 77 (2.75)
  Hypertension 509 (37.48) 2202 (32.43) 127 (22.68) 557 (19.89)
Top 10 procedures, n (%)
  Other diagnostic procedures 1207 (88.88) 6241 (91.91) 63 (11.25) 100 (3.57)
  Dental procedures 1071 (78.87) 5423 (79.87) 351 (62.68) 1909 (68.18)
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Variables
CCa cases
(n=1358)

CC controls
(n=6790)

RCb cases
(n=560)

RC controls
(n=2800)

  Microscopic examination (bacterial smear; culture;
toxicology)

958 (70.54) 4706 (69.31) 298 (53.21) 1917 (68.46)

  Other therapeutic procedures 951 (70.03) 4720 (69.51) 296 (52.86) 1544 (55.14)
  General emergency room 845 (62.22) 4097 (60.34) 203 (36.25) 622 (22.21)
  Pathology 817 (60.16) 3070 (45.21) 413 (73.75) 2258 (80.64)
  Chemistry laboratory-clinical 806 (59.35) 3756 (55.32) 50 (8.93) 266 (9.50)
  Hematology laboratory-clinical 800 (58.91) 3740 (55.08) 470 (83.93) 2345 (83.75)
  Nonoperative urinary system measurements 792 (58.32) 3784 (55.73) 138 (24.64) 763 (27.25)
  General pharmacy 764 (56.26) 3556 (52.37) 47 (8.39) 229 (8.18)
Top 10 medications, n (%)
  Other analgesics and antipyretics 769 (56.63) 3301 (48.62) 5 (0.89) 0 (0.00)
  Anti-inflammatory and antirheumatic products, nonsteroids 724 (53.31) 3625 (53.39) 65 (11.61) 272 (9.71)
  Throat preparations 723 (53.24) 3423 (50.41) 136 (24.29) 725 (25.89)
  Anti-infectives 705 (51.91) 3267 (48.11) 51 (9.11) 66 (2.36)
  Opioids 687 (50.59) 2779 (40.93) 4 (0.71) 34 (1.21)
  Topical products for joint and muscular pain 682 (50.22) 3427 (50.47) 1 (0.18) 1 (0.04)
  Stomatological preparations 673 (49.56) 3046 (44.86) 102 (18.21) 377 (13.46)
  Other gynecologicals 644 (47.42) 3283 (48.35) 80 (14.29) 361 (12.89)
  Other cardiac preparations 577 (42.49) 2949 (43.43) 167 (29.82) 878 (31.36)
  Corticosteroids for systemic use, plain 573 (42.19) 2520 (37.11) 121 (21.61) 528 (18.86)

aCC: colon cancer.
bRC: rectal cancer.

Table 2 presents the results of CC prediction using 2 feature
engineering strategies: 1 excluding CRC-related features
and the other excluding cancer-related features. Additional
evaluation metrics for CC prediction across all settings can
be found in Tables S1-S2 in Multimedia Appendix 1. In most
cases, tree-based models (XGBoost and RF) outperformed
linear models (SVM and LR), yielding higher AUC values.
Specifically, after removing CRC-related features, the RF
model achieved the highest AUC for the 0-year prediction
(0.811, 95% CI 0.808-0.814), while RF performed best for the

1-year (0.748, 95% CI 0.745-0.751), 3-year (0.689, 95% CI
0.684-694), and 5-year (0.686, 95% CI 0.68-0.692) predic-
tions for CC. However, after removing features associated
with previous cancers, the model performance decreased: LR
achieved AUC values of 0.788 (95% CI 0.786-0.791) for
0-year prediction; RF achieved AUC values of 0.716 (95%
CI 0.713-0.719) for 1-year, 0.684 (95% CI 0.679-0.688) for
3-year, and 0.663 (95% CI 0.658-0.668) for 5-year prediction.
Performance metrics, including specificity, sensitivity, PPV,
NPV, and F1-score, exhibited similar trends.

Table 2. AUCa comparison for colon cancer prediction using machine learning models across different prediction windows (0, 1, 3, and 5 years).
Feature strategy and model 0-year AUC (95% CI) 1-year AUC (95% CI) 3-year AUC (95% CI) 5-year AUC (95% CI)
Excluding CRC-relatedb features
  LRc 0.809 (0.806-0.812) 0.733 (0.73-0.736) 0.683 (0.679-0.688) 0.674 (0.668-0.679)
  SVMd 0.748 (0.745-0.751) 0.689 (0.685-0.692) 0.614 (0.61-0.618) 0.616 (0.61-0.621)
  RFe 0.811 (0.808-0.814) 0.748 (0.745-0.751) 0.689 (0.684-0.694) 0.686 (0.68-0.692)
  XGBoostf 0.802 (0.799-0.806) 0.745 (0.741-0.748) 0.689 (0.684-0.694) 0.657 (0.651-0.663)
Excluding cancer-related features
  LR 0.788 (0.786-0.791) 0.713 (0.71-0.716) 0.669 (0.665-0.674) 0.661 (0.656-0.667)
  SVM 0.725 (0.722-0.729) 0.646 (0.643-0.65) 0.604 (0.6-0.608) 0.611 (0.606-0.617)
  RF 0.77 (0.767-0.773) 0.716 (0.713-0.719) 0.684 (0.679-0.688) 0.663 (0.658-0.668)
  XGBoost 0.76 (0.757-0.764) 0.714 (0.711-0.717) 0.662 (0.657-0.666) 0.643 (0.638-0.648)

aAUC: area under the curve.
bCRC: colorectal cancer.
cLR: logistic regression.
dSVM: support vector machine.
eRF: random forest.
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Feature strategy and model 0-year AUC (95% CI) 1-year AUC (95% CI) 3-year AUC (95% CI) 5-year AUC (95% CI)

fXGBoost: Extreme Gradient Boosting.

Table 3 provides RC prediction results using the same feature
engineering strategies and 4 prediction windows. Additional
evaluation metrics for RC prediction across all settings
can be found in Tables S3-S4 in Multimedia Appendix 1.
Again, after removing CRC-related features, the XGBoost
model achieved the highest AUC for the 0-year prediction
(0.829, 95% CI 0.825-0.834), while RF performed best
for the 1-year (0.771, 95% CI 0.766-0.777), and XGBoost
did best for 3-year (0.727, 95% CI 0.721-0.732), and
5-year (0.721, 95% CI 0.713-0.729) predictions for RC.
Eliminating cancer-related features resulted in a performance

decrease: XGBoost achieved AUC values of 0.811 (95% CI
0.806-0.815) for 0-year prediction; RF achieved AUC values
of 0.756 (95% CI 0.751-0.76) for 1-year, 0.724 (95% CI
0.718-0.73) for 3-year, and 0.711 (95% CI 0.704-0.719) for
5-year predictions. Performance metrics exhibited consistent
trends. In both the CC and RC prediction tasks, we observed
a decline in model performance as the prediction window
length increased. Notably, when we removed cancer-related
features, the AUC declined. This highlights the pivotal role
these features play in enhancing prediction performance.

Table 3. AUCa comparison for rectal cancer prediction using machine learning models across different prediction windows (0, 1, 3, and 5 years).
Feature strategy and model 0-year AUC (95% CI) 1-year AUC (95% CI) 3-year AUC (95% CI) 5-year AUC (95% CI)
Excluding CRCb-related features
  LRc 0.819 (0.815-0.824) 0.763 (0.758-0.767) 0.722 (0.716-0.728) 0.693 (0.686-0.7)
  SVMd 0.78 (0.774-0.785) 0.694 (0.689-0.699) 0.656 (0.649-0.662) 0.658 (0.65-0.665)
  RFe 0.826 (0.822-0.83) 0.771 (0.766-0.777) 0.719 (0.713-0.726) 0.72 (0.712-0.727)
  XGBoostf 0.829 (0.825-0.834) 0.766 (0.762-0.771) 0.727 (0.721-0.732) 0.721 (0.713-0.729)
Excluding cancer-related features
  LR 0.807 (0.803-0.812) 0.748 (0.743-0.752) 0.709 (0.703-0.715) 0.69 (0.683-0.697)
  SVM 0.767 (0.761-0.772) 0.686 (0.68-0.691) 0.653 (0.646-0.659) 0.656 (0.648-0.663)
  RF 0.806 (0.802-0.81) 0.756 (0.751-0.76) 0.724 (0.718-0.73) 0.711 (0.704-0.719)
  XGBoost 0.811 (0.806-0.815) 0.749 (0.744-0.753) 0.724 (0.718-0.729) 0.679 (0.672-0.687)

aAUC: area under the curve.
bCRC: colorectal cancer.
cLR: logistic regression.
dSVM: support vector machine.
eRF: random forest.
fXGBoost: Extreme Gradient Boosting.

To further evaluate model performance, we integrated
XGBoost and RF using soft voting. The AUC fluctuated
around 0.01, showing no significant change from the best
prevoting performance (Table S9 in Multimedia Appendix 1).
For temporal validation, the overall AUC decreased slightly
by around 0.02, suggesting potential distribution shifts over
time that may have affected generalizability. While the model
fit earlier data well, its weaker performance on newer data
hints at possible drift (Tables S5-S8 in Multimedia Appendix
1).

To gain deeper insights into the risk factors associated
with these findings, we present SHAP summary plots for CC
and RC predictions using 2 feature engineering strategies and
for 0-year and 3-year prediction windows in Figures 3 and
4. Supplementary SHAP summary plots for all other models
can be found in Figures S1-S2 in Multimedia Appendix
1. Within the CC group, several predictors emerged as

positively associated with the risk of CC. Notably, several
diagnoses involving various tumors, such as suspected cancer,
secondary malignant neoplasm, benign neoplasm of uterus,
benign neoplasm of skin, neoplasm of uncertain behavior,
neoplasm of uncertain behavior of skin, cancer of other
female genital organs and myeloproliferative diseases were
identified as influential factors. Gastrointestinal symptoms,
encompassing conditions like gastrointestinal hemorrhage,
other disorders of intestine, other symptoms involving the
abdomen and pelvis, noninfectious gastroenteritis, appendi-
ceal conditions, diverticulosis and diverticulitis, intestinal
obstruction without hernia, and disorders of the intestine also
exhibited a positive association with CC risk. In addition,
medical procedures related to gastrointestinal diseases and
symptoms, including upper gastrointestinal endoscopy, were
significantly associated with the development of CC.
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Figure 3. SHAP (Shapley Additive Explanations) summary plot of the top 20 features in CC prediction using best-performing models with 0-year
and 3-year prediction windows: (A) excluding CRC-related features; (B) excluding cancer-related features. The prefix before the “_” in the y-axis
labels of plots indicates the source of the corresponding features in the PCORnet data model. Specifically, these sources are: Diagnosis (Diag),
Procedure (Proc), Medication (Med), Vital Signs (Vital), and Demographics (Demo). CC: colon cancer; CRC: colorectal cancer; LR: logistic
regression; RF: random forest; XGBoost: Extreme Gradient Boosting.
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Figure 4. SHAP (Shapley Additive Explanations) summary plot of the top 20 features in RC prediction using best-performing models with 0-year
and 3-year prediction windows: (A) excluding CRC-related features; (B) excluding cancer-related features. CRC: colorectal cancer; RC: rectal
cancer; XGBoost: Extreme Gradient Boosting.

In the RC group, similar positive predictors were identified,
mirroring the trends observed in the CC group, including
gastrointestinal symptoms (eg, gastrointestinal hemorrhage,
anal, and rectal conditions) and the presence of other cancers

or tumors (eg, secondary malignant neoplasms and benign
neoplasms of the uterus or skin). In addition, the pres-
ence of autoimmunity, diseases associated with a potentially
weakened immune system (eg, HIV, viral warts, and human
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papillomavirus [HPV]), and conditions like hemorrhoids were
linked to a heightened long-term risk of RC. Being under-
weight was a significant symptom associated with both CC
and RC. Conversely, obesity, overweight, and normal weight
appeared to be negatively associated with RC development.
Importantly, after removing cancer-related features from
consideration, the significance of anemias surged to the
forefront in both the CC and RC groups. These included
indicators such as iron deficiency anemias and other anemias.
Nevertheless, gastrointestinal diseases and immunodeficiency
pathological changes remained substantial factors contribu-
ting to CC risk, while factors such as HPV and weight
retained their significance as primary determinants of RC.
The use of anti-inflammatory or antirheumatic medications
were associated with decreased risk of RC.

Discussion
Principal Findings
In this study, we used 4 traditional ML algorithms (ie,
XGBoost, RF, SVM, and LR) and obtained informative
results predicting EOCRC using structured EHR data. In most
cases, the tree-based models, (XGBoost and RF) outper-
formed linear models, achieving the best AUC scores for
various prediction windows. In addition, even after exclud-
ing cancer diagnosis variables (eg, pancreatic, skin, and
thyroid cancer), undergoing cancer-related procedures (eg,
liver biopsy and bone marrow biopsy), cancer treatments (eg,
cisplatin and doxycycline), our models continued to ach-
ieve acceptable AUC scores. Immune and digestive sys-
tem disorders, blood diseases, and secondary cancers were
identified as significant predictors.
Comparison to Previous Work
Most of our experimental findings were consistent with
existing published research. Cancer-related diseases and
diagnoses emerged as risk factors leading to the diagnosis
of EOCRC, both for CC and RC. For example, uterine
cancer was identified as a driver of EOCRC, suggesting a
potential genetic association between these malignancies in
younger patients [33]. Research also demonstrates that the
incidence rate of second primary cancers among survivors is
significantly higher than cancer in the general population,
and survivors experience notable morbidity and mortality
from their cancer treatment [34]. In addition, the use of
CT scans for other medical reasons could contribute to the
incidental identification of EOCRC cases [35]. Notably, we
know that some forms of cancer treatment (eg, radiation)
predisposes one to an increased risk for secondary malignan-
cies, including EOCRC, particularly in patients surviving
childhood cancer [36].

Inflammatory bowel diseases (IBDs) are well established
risk factors for CRC, particularly during young adulthood.
The chronic inflammation associated with IBD leads to the
release of growth cytokines, excess blood flow, and meta-
bolic free radicals, all of which contribute to the heightened
risk of developing CRC [37]. Therapies for IBD sometimes
involve immune suppression, another known risk factor

for cancers. Furthermore, many gastrointestinal diseases
can cause malabsorption or malnutrition [38], resulting in
patients being underweight which can also contribute to
immune dysfunction or suppression [39]. However, over-
weight patients were at low risk of EOCRC as our anal-
ysis demonstrated despite emerging evidence that being
overweight may be associated with an increased risk of
tumor recurrence and colorectal carcinogenesis [40,41]. The
temporal use of antibiotics in relation to subsequent devel-
opment of EOCRC is an interesting finding as it supports
several previously reported roles that the gut microbiome may
plan in CRC protection and development [42]. Our analy-
sis highlighted that the diagnosis of iron deficiency anemia
predated CC, but had less association with rectal cancers.
It is logical, given that CC are situated more proximal in
the gastrointestinal tract, causing occult chronic blood loss
and subsequent anemia rather than overt gross bleeding as is
typically evident from RC.

In addition, our study observed a significantly higher
incidence of CRC cases among HIV-infected patients
compared to HIV-uninfected individuals [43]. The heightened
risk can be attributed to disruptions in immune function
caused by immunodeficiency, which exposes individuals
to a higher susceptibility against cancer-causing viruses,
including HPV, Epstein–Barr virus, Kaposi sarcoma-associ-
ated herpesvirus, etc, as evidenced in our analysis [44].
Another notable finding was the association between CC
and diseases of myeloproliferative disease. Similar to other
cancers, the potential link could be related to genetics,
treatments that induce DNA damage that could predispose
to EOCRC, and chronic immune dysregulation. Overall,
our study sheds light on the complex interplay between
IBD, malnutrition, immune function, and specific blood-rela-
ted diseases in the development of CRC. Understanding
these relationships is crucial in advancing our knowledge
of EOCRC risk factors and devising targeted interventions
for at-risk populations. It can help health care providers
identify individuals who may benefit most from screening
between the ages of 18 and 44 years. In this case-control
study, we identified several factors independently associated
with an elevated risk of EOCRC. These findings could
inform patient-provider discussions about the need for and
approach to CRC screening and support targeted interventions
to improve screening uptake among high-risk individuals.
Strengths and Limitations
The strength of our study is to develop an early diagnos-
tic tool that can help identify individuals at higher risk for
EOCRC before the onset of clinical symptoms or suspicion.
To further clarify, we test the algorithm across different
prediction windows—0, 1, 3, and 5 years—meaning we
use data from these periods before a patient’s first CRC
diagnosis to predict whether they will develop CRC in the
future. This approach enables us to assess how the algorithm
can detect early risk signals well in advance of diagnosis,
providing actionable insights for clinicians to consider for
individuals who may not yet exhibit symptoms or be under
suspicion for CRC. For individuals without clear clinical
suspicion (ie, those who are not yet exhibiting symptoms or
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are below typical screening age), our algorithm could serve
as a risk stratification tool. By analyzing real-world data,
such as demographic information, medical history, and other
relevant factors, the model can help identify patients who
may benefit from earlier screening or closer monitoring, even
in the absence of overt symptoms. This can be particularly
important in populations with no established risk factors for
CRC, but who may still be at risk for early-onset cases.

Our study does have several limitations. First, the
mechanism through which identified medical factors are
associated with EOCRC is speculative. For example, CT
scans contributed significantly to the model’s performance,
but the specific reasons are unclear. EHRs did not record
the reason why patients underwent CT scans. Perhaps some
patients obtained CT scans because of symptoms related
to undiagnosed CRC while others received CT scans for
other reasons with the incidental finding of CRC. It is less
likely that CT scans could be associated with causing CRC
due to radiation exposure. For that to occur, the cumulative
lifetime exposure would need to be very high with expo-
sure over a number of decades for that to occur. Perhaps
CT imaging itself is just a surrogate for access to care
whereby EOCRC is more likely to be eventually diagnosed
as opposed to patients who might expire for other reasons
with CRC, but before a diagnosis. Second, the exclusion of
confounder samples and features posed difficulties, given
the lack of universally accepted standards for phenotype
definitions and ambiguous descriptions. These challenges
hindered the design of the most optimal experiment [45].
Third, our experiments are carried out based on the EHR data,
which inherently contains flaws, including missing values
and potential mistakes in records. Efforts were made to fill
in missing values, but comprehensive amendments remained
challenging. The characteristics of the EHR data, such as
temporality, irregularity, sparsity, and data imbalance, can
result in abnormal outcomes when applying ML models

[46,47]. Fourth, we primarily focused on metrics related to
discrimination or classification (eg, AUC), as we believe
these provide essential insights into how effectively the model
differentiates between cases and noncases. We acknowl-
edge that a more holistic evaluation—including calibration,
fairness, stability, and net benefit—would provide a fuller
picture of the model’s real-world applicability.
Future Directions
Future research should focus on refining the experimental
design, exploring alternative feature selection techniques,
incorporating large language models based on both ambu-
latory and inpatient data, and integrating domain knowl-
edge to enhance the performance of the prediction models.
Ultimately, these efforts will contribute to early detection
and better management of CRC, with the goal of improving
patient outcomes. Using techniques like Synthetic Minority
Over-sampling Technique or cost-sensitive learning could
further improve the model’s ability to detect the minority
class. These methods were not used in this study but could be
considered in future work to explore their potential impact on
model performance, especially in terms of improving recall
for the minority class.
Conclusion
In conclusion, our study demonstrated the potential of
traditional ML algorithms in predicting EOCRC using
real-world data for individuals below the screening age
guideline. The identification of significant predictors and
their consistency with academic research findings provide
valuable insights for pursuing additional hypotheses or
targeting potential patients at risk for EOCRC. However,
addressing the challenges and limitations related to data
quality, experimental design, and ML models’ development
is essential for improving the accuracy and reliability of
EOCRC prediction models.

Data Availability
The variables used in this study can be found on GitHub [48].
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AUC: area under the curve
CC: colon cancer
CRC: colorectal cancer
CT: computer tomography
EHR: electronic health record
EOCRC: early-onset colorectal cancer
HPV: human papillomavirus
IBD: inflammatory bowel diseases
ICD-10: International Classification of Diseases, Tenth Revision
ICD-9: International Classification of Diseases, Ninth Revision
LR: logistic regression
ML: machine learning
MRI: magnetic resonance imaging
RC: rectal cancer
RF: random forest
SHAP: Shapley Additive Explanations
SVM: support vector machine
XGBoost: Extreme Gradient Boosting
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