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Abstract
Background: Defining optimal adjuvant therapeutic strategies for older adult patients with breast cancer remains a challenge,
given that this population is often overlooked and underserved in clinical research and decision-making tools.
Objectives: This study aimed to develop a prognostic and treatment guidance tool tailored to older adult patients using
artificial intelligence (AI) and a combination of clinical and biological features.
Methods: A retrospective analysis was conducted on data from women aged 70+ years with HER2-negative early-stage breast
cancer treated at the French Léon Bérard Cancer Center between 1997 and 2016. Manifold learning and machine learning
algorithms were applied to uncover complex data relationships and develop predictive models. Predictors included age, BMI,
comorbidities, hemoglobin levels, lymphocyte counts, hormone receptor status, Scarff-Bloom-Richardson grade, tumor size,
and lymph node involvement. The dimension reduction technique PaCMAP was used to map patient profiles into a 3D space,
allowing comparison with similar cases to estimate prognoses and potential treatment benefits.
Results: Out of 1229 initial patients, 793 were included after data refinement. The selected predictors demonstrated high
predictive efficacy for 5-year mortality, with mean area under the curve scores of 0.81 for Random Forest Classification
and 0.76 for Support Vector Classifier. The tool categorized patients into prognostic clusters and enabled the estimation of
treatment outcomes, such as chemotherapy benefits. Unlike traditional models that focus on isolated factors, this AI-based
approach integrates multiple clinical and biological features to generate a comprehensive biomedical profile.
Conclusions: This study introduces a novel AI-driven prognostic tool for older adult patients with breast cancer, enhancing
treatment guidance by leveraging advanced machine learning techniques. The model provides a more nuanced understanding
of disease dynamics and therapeutic strategies, emphasizing the importance of personalized oncology care.
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Introduction
Breast cancer is more commonly diagnosed in older
populations, particularly among women aged 65 years and

older in wealthier countries. In the United States, the average
age of breast cancer diagnosis is 62 years, and in 2020,
women aged 70 years and older accounted for 30% of all new
cases of the disease [1,2]. In the European Union, women
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older than 65 years made up about 44% of all breast cancer
cases [3]. However, treatment approaches for early-stage
breast cancer in these older age groups are often inadequate
and unclear, largely due to a lack of solid evidence and
the unreliability of web-based tools for making decisions
about additional therapies, leading to less than ideal treatment
outcomes [4,5].

The treatment plan for breast cancer is tailored based
on the cancer’s characteristics, the patients’ overall health
status, and their personal preferences. Standard care for
early-stage breast cancer usually involves surgery, and may
also include radiation, as well as neoadjuvant or adjuvant
systemic therapy, used alone or in various combinations.
Crafting postsurgical treatment strategies for older patients
with breast cancer is complex due to their typically com-
promised health and the lack of data from clinical trials,
since older adults are seldom participants in such studies and
are not well represented in meta-analyses that evaluate the
effectiveness of adjuvant chemotherapy in reducing breast
cancer mortality and improving survival rates [6,7]. Conse-
quently, artificial intelligence (AI) has been investigated as
a potential tool to support decision-making in the context of
limited clinical trial evidence.

Early uses of AI in cancer treatment guidance involved
knowledge-based systems [8,9]. Recently, a broader spectrum
of machine learning methods has been examined to aid both
clinicians and patients with breast cancer [10-15]. Nonethe-
less, most decision support tools are designed for patients
aged between 18 and 65 years, reflecting the age group
most studied, with limited research focusing on treatment
outcomes for older patients with breast cancer [16-19]. The
prognostic tool PREDICT [20], although popular, has shown
limited effectiveness for older adult patients [21]. Adjutorium
[22], which uses extensive datasets from the United King-
dom and the United States, provides more precise progno-
sis and treatment benefit predictions for breast cancer than
PREDICT. Despite this, it primarily includes patients aged
between 30 and 65 years, with fewer older patients in its
datasets, and omits certain vital tumor information such as
progesterone receptor (PR) status [19]. Another established
tool, Adjuvant! Online, predicts 10-year overall survival,
breast cancer survival, and recurrence rates, commonly used
to inform expected outcomes from endocrine therapy and
chemotherapy [23]. Its accuracy is questionable for older
women with early-stage breast cancer, probably because it
was trained on data with a maximum age limit of 69 years
[24]. In a review by Engelhardt et al [25], various models
could forecast breast cancer outcomes, typically based on
genetic risk scores, but only Adjuvant! Online factored in
comorbidity status. Yet, none had been thoroughly validated
in older adult populations. The more recent PORTRET tool
was designed to predict 5-year recurrence, overall mortality,
and mortality from other causes in patients older than 65
years with early invasive breast cancer, as well as to estimate
the benefits of adjuvant systemic treatment [26]. The tool’s
authors observed that their treatment effect estimates were
based on data from pooled randomized clinical trials, which

might not be entirely applicable to older adults due to the
typically selective nature of older participants in these trials.

This study aims to develop models that overcome the
shortcomings of past research by using cohorts that accurately
reflect the demographic of older patients with breast cancer
and by leveraging a detailed dataset that includes adminis-
trative, biological, treatment, primary tumor, and survival
information. Our latest research uses manifold learning,
an advanced tool for nonlinear dimensionality reduction
that excels in unraveling complex geometric relationships
within high-dimensional data, revealing intricate connections
between clinical factors.

We introduce a new prognostic and predictive tool
tailored for older adult patients with breast cancer, pro-
viding postoperative treatment recommendations. This tool
is distinctive in its consideration of the interdependencies
among variables within a patient population. It acknowl-
edges the relative importance of prognostic factors in a way
that many existing models do not. Our findings are set to
be extremely beneficial for oncologists when determining
suitable adjuvant treatment approaches for older adult patients
with breast cancer, taking into account the nuances of both
tumor-related and patient-specific characteristics.

Methods
Recruitment
In this retrospective study, we examined pseudonymized
data from women aged 70 years and older who received a
diagnosis of early-stage breast cancer and underwent surgery
with the intent to cure (either lumpectomy or mastectomy,
with or without axillary lymph node dissection) at the French
Léon Bérard Cancer Center from January 1997 to December
2016. The French Léon Bérard Cancer Center is a 300-bed
comprehensive cancer center located in Lyon, France, serving
more than 30,000 patients annually, with a multidisciplinary
team of 2000 health care professionals and a catchment area
covering southeast France.

The inclusion criteria were not limited by the breast
cancer’s histological or molecular characteristics, the size
of the tumor, or the status of the lymph nodes. However,
the study did exclude patients who had noninvasive in
situ carcinoma without invasive carcinoma, HER2 (human
epidermal growth factor receptor 2) positive breast carci-
noma, or who presented with distant metastases at the time
of surgery. HER2-positive breast cancer cases were exclu-
ded because these patients typically receive trastuzumab-
based targeted therapies, which dramatically improved their
prognosis following its widespread adoption for nonmeta-
static breast cancer around 2005. In contrast, chemother-
apy protocols for HER2-negative cases remained consistent
during the treatment period of the patients included in
this study, ensuring uniformity in therapeutic strategies and
outcomes across the cohort. The research concentrated on the
5-year survival rates, selecting only those who had at least
5 years of follow-up and whose vital status information was
available.
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The database was constructed using ConSore, a data-
mining application developed by UNICANCER [27]. The
ConSore platform extracts data from the electronic health
records of the Léon Bérard Cancer Center, integrating patient
demographics, clinical variables, and treatment details. To
ensure accuracy, each record was also subject to a manual
verification process. Data compiled included demographic
details and clinical features of patients at diagnosis, alongside
comprehensive biological and disease-specific information,
and the treatments administered.

We included the following characteristics for patients
diagnosed with early-stage breast cancer: age; Eastern
Cooperative Oncology Group performance status; BMI;
comorbidities such as diabetes, heart failure, coronary artery
disease, chronic obstructive pulmonary disease, and cogni-
tive impairments; history of hospitalizations; and polyphar-
macy. We also gathered biological indicators at the time
of diagnosis, which included hemoglobin levels, lympho-
cyte counts, and creatinine clearance. We extracted data
on disease attributes including histological subtype, hor-
mone receptor status, HER2 status, Scarff-Bloom-Richardson
(SBR) grade, tumor count, size of the largest tumor, and
the extent of lymph node involvement as per the Tumor,”
“Nodes,” “Metastases (TNM) classification [28]. The statuses
of estrogen receptors (ERs), PRs, and HER2 were determined
from the histopathological analysis of pretreatment biopsies.
Hormone receptor negativity was classified when fewer than
10% of cells were stained for ER and PR. HER2 negativ-
ity was assigned when immunohistochemistry staining was
below 1+. For tumors scoring 2+, further in situ hybridiza-
tion tests were conducted to assess HER2 amplification [29].
Treatment data collected encompassed the type of surgery
performed, lymph node dissection, and adjuvant treatments
including radiotherapy, chemotherapy, and endocrine therapy.
Outcome, Predictors, and Predictive
Power
Outcome was overall survival in 5 years. Due to the high
percentage of missing values for cause of death, cancer-
specific survival was not considered. Nine predictors were
selected: age, tumor size (mm), tumor grade (defined as either
SBR low: 1‐2; or high: 3), number of affected ganglions,
hormone-receptor status (positive if either estrogen or PRs
were immunohistochemically present in ≥10% of tumor cells;
otherwise, patients were classified as triple negative), serum
hemoglobin (g/dL) and lymphocyte count (G/L), BMI, and
the presence of comorbidities.

The initial database, built using ConSore, compiled a range
of clinical, biological, and disease-specific data, along with
information on administered treatments. We aimed for a
predictors representing a mixture of features typically tested
before patients undergo treatment plans. Thus, we excluded
features regarding treatments as (1) we wanted to gauge
prediction accuracies based only on the initial testing of the
patient, and (2) the efficacy of treatment strategies was also
an outcome of interest in the study. We further excluded
features with significant number of missing values so as to
limit the loss of usable data. Creatinine was excluded due to

its high correlation with patient’s age and potential kidney
disorders that are not uncommon in the study’s demographic.
The feature was found to correlate with negative patient
outcome, but this was independent of cancer and introduced a
bias. Following these steps, 9 predictors were isolated, a list
comprising both continuous and categorical variables, as well
as an acceptable mixture of relevant biological and clinical
features. Random Forest Classification (RFC) and Support
Vector Classifier (SVC) were used to evaluate the predictive
power of the selected features. We used 5-fold cross-valida-
tion to mitigate overfitting and ensure the validity of our
results.

Model Development and Validation
Patients in the initial cohort with missing values for any of the
9 predictors were cut from the study. The remaining patients
comprised the model development cohort. This was divided
into reference and model data.

Reference Data and Digital Twins
The reference data inclusion criteria were positive outcome
for survival in 5 years and remission without relapse by the
last follow-up. The purpose of this group was to calibrate the
our patented algorithm, generating digital twins for future test
subjects. Digital twins refer to synthetic patient data derived
from the reference group specifically similar in profile to a
new test subject. The model uses these synthetic profiles to
recognize complex variations within the test profile. Thus,
digital twins are generated and used in the model to provide
recommendations on a new patient but do not themselves
constitute the result that a physician would need to interpret.

Model Data
The model data, distinct from the reference data to prevent
data leaking, are the population that is run through the
precalibrated model and scored against the reference group.
The data are thus transformed from raw patient data to a
numerical and standardized representation of their deviation
from the reference group (their digital twins). The purpose
of these transformed data is to populate the model with a
range of patient profiles that will serve for future prognostic
analysis.
PaCMAP, Mean-Shift Clustering, and
Manifold Visualization
The transformed model data underwent dimensionality
reduction using PaCMAP (Pairwise Controlled Manifold
Approximation) [30] to generate 3D data referred to as a
manifold, permitting easy visualization. The data were then
stratified using mean-shift clustering [31], a nonparametric,
density-based clustering algorithm that can be used to identify
clusters in a dataset (Figure 1). Each cluster represents a
local group of similar patients in the 3D space. Clusters
represent typical patient profiles in the overall population.
The advantage of clustering is that it captures the variability
of subjects of a subgroup for easy analysis. A better under-
standing of the cluster and its variability allows clinicians to
assess whether a new test subject aligns well with the cluster
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and to identify potential differences. When considering a
new patient, estimates of prognosis and expected benefits
of adjuvant treatment are ascertained by the examination of

cluster-specific treatment outcomes pertinent to the patient’s
clinical profile.

Figure 1. Graphical representation of the 6 clusters of patients in the 3D manifold space. Patients in the reduced 3D space, or manifold, were grouped
into clusters by their spatial distribution and profile similarity. Clusters were then colored based on the overall mortality rate of included patients. A
newly tested patient is localized on the manifold and represented by a blue sphere.

Prediction of Chemotherapy Benefit
To estimate the benefit of chemotherapy, the position of a
new patient is identified within the 3D manifold. Using the
K-nearest neighbors algorithm, the 15 closest chemotherapy-
treated patients and the 15 nearest non–chemotherapy-treated
patients are pinpointed. Kaplan-Meier (KM) survival curves
were plotted for each of these patient groups, providing
a visual estimation of chemotherapy benefit for a clinical
profile.

Validation of Treatment Benefit
Predictions With Kullback-Leibler
Divergence
To validate that the distributions of the 2 treatment subgroups
are comparable, we used the Probability Density Function,
which describes the spread of the data points in the 3D space.
To measure the difference between these distributions, we
applied the symmetrized Kullback-Leibler (KL) divergence,
a statistical method that quantifies how much one distribu-
tion differs from another. To assess whether the observed
difference was meaningful or just due to random chance,
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we conducted a permutation analysis. This technique works
by randomly shuffling the data multiple times to create
many new random comparisons; comparing the real result
with the random results allows us to determine whether the
observed difference between the distributions was statistically
significant. If distributions of 2 different treatment groups
were found to be similar, they could be compared to provide a
prediction of treatment benefit.
Model Stability Validation
The original model data were split into 2 groups: 70% (327)
of every cluster was pooled into the training group, and
the remaining 30% (139) was pooled into the test group. A
new manifold learning process was applied to the training
group, and the test group was then projected onto this newly
generated manifold. Patients in the test and model groups
from the same cluster of origin were compared to evalu-
ate whether data points would exhibit similar distributions
(appear in proximity to each other) in the new manifold space
across 10 different manifold initializations.
Statistical Analysis

Kullback-Leibler Divergence and Permutation
Test
The symmetrical KL divergence was used to measure the
difference between 2 probability distributions. A permutation
test was subsequently conducted to assess the significance
of the observed KL divergence. This involved calculating
the KL divergence for a large number of permutations of
the combined datasets and comparing these values with the
original KL divergence. The P value is calculated as the
proportion of permutations where the KL divergence is as
extreme as, or more extreme than, the original KL diver-
gence calculated between the actual groups, thus providing
a measure of how likely it was to observe a divergence
as extreme as the original, under the null hypothesis of no
difference between the distributions. Mathematically, this P
value is the ratio of the number of permuted KL divergences
that are equal to the original KL divergence or greater to the
total number of permutations. A low P-value suggests that
the observed difference in distributions is unlikely to have

occurred by chance, thus indicating a significant divergence
between the 2 groups.

Survival Analysis using the KM Estimator and
Log-Rank Test
The KM estimator was used to generate survival curves for
different treatment subgroups. The log-rank test, a nonpara-
metric test, was applied to compare the survival distributions
and a P value was calculated to determine the statistical
significance of the differences observed between the groups.
A low P value suggests that the observed survival curves are
significantly different. The statistical package used for the
analysis is Lifelines 0.30.0 (Lifelines Developers) [32].
Ethical Considerations
This retrospective study involving human subjects was
reviewed and approved by the French data protection
authority, the Commission Nationale de l’Informatique et des
Libertés, under authorization number 9191415, dated October
10, 2019. According to institutional and national guidelines,
no additional approval from a research ethics board was
required, as the data used were previously collected for
clinical purposes. No new informed consent was required
for this study. The analysis was conducted using data for
which participants had provided general consent at the time
of data collection. All data were pseudonymized prior to
analysis to protect patient confidentiality. No identifiable
personal information was retained in the research dataset. No
compensation was provided to participants.

Results
Cohort Characteristics
A total of 1229 patients comprised the initial cohort. Of these,
793 (65%) remained after entries with missing values were
removed (Figure 2). Eliminating the risk of introducing a
bias, the initial cohorts’ demographic and clinical characteris-
tics were found to be strictly similar to that of the final cohort
and are summarized in Tables 1 and 2.
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Figure 2. Flowchart of data construction.

Table 1. Patient characteristics of the initial cohort (N=1229).
Characteristics Participants
Age at diagnosis (years), n (%)   
  70‐74 580 (47)
  75‐79 331 (27)
  80‐84 204 (17)
  85‐89 93 (8)
  >90 20 (2)
Performance status, n (%)   
  0 339 (28)
  1 322 (26)
  2 48 (4)
  3-4 23 (2)
  Missing data 497 (40)
BMI, n (%)   
  <18.5 32 (3)
  18.5‐25 446 (36)
  25‐30 409 (33)
  >30 266 (22)
  Missing data 76 (6)
Comorbidities, n (%)   
  Creatinine clearance <40 mL/minute 57 (5)
  Heart failure 105 (9)
  Coronary artery disease 123 (10)
  Chronic obstructive pulmonary disease 36 (3)
  Diabetes 174 (14)

Table 2. Cancer characteristics of the initial cohort (N=1229).
Tumor size
Status T1 T2 T3 T4 Missing data
Participants, n (%) 567 (46) 286 (23) 36 (3) 250 (20) 90 (7)
Lymph nodes
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Tumor size
  Status N0 N1 N2 N3 Missing data
  Participants, n (%) 614 (50) 243 (20) 55 (4) 55 (4) 262 (21)
Grade SBRa

  Status I II III Missing data
  Participants, n (%) 188 (15) 648 (53) 281 (23) 112 (9)
Estrogen receptor
  Status Positive Negative Missing data
  Participants, n (%) 978 (80) 145 (12) 106 (9)
Progesterone receptor
  Status Positive Negative Missing data
  Participants, n (%) 838 (68) 285 (23) 106 (9)

aSBR: Scarff-Bloom-Richardson.

Patient demographics and characteristics were evaluated on
the date of breast cancer diagnosis (Table 1). Median age was
75 years (range: 70‐100 years), with 317/1229 (26%) patients
aged 80 years or older. Performance status was generally
good, as most are categorized as 0 or 1. The main comorbidi-
ties were diabetes (174/1229 patients, or 14%), followed by
coronary artery disease (123/1229 patents, 10%) and cardiac
insufficiency (105/1229 patients, 9%).

The majority presented early-stage tumors (T1 in 567/1229
patients, with a prevalence of 46%), and lymph node
involvement was mostly absent (N0 in 614/1229 patients,
or 50%). The tumors were typically SBR grade II and 80%
(978/1229 patients) were ER-positive. Progesterone receptor
positivity was also high at 68% (838/1229 patients). Twelve
percent of patients (149/1229) were reported to have received
chemotherapy (Table 2).
Development Cohort
The final cohort was divided into “reference” and “model”
cohorts for model development (Figure 2). A total of

327 patients, that is, 50% of patients meeting the criteria
for manifold-estimated derivation training were randomly
selected. The purpose of this training group was to calibrate
the manifold-estimated derivation–scoring algorithm. The
model data comprised all remaining patients (466, 59% of
the model development cohort).
Features Performance and Area Under
the Curve Scores
In Figure 3, we ascertained the predictive efficacy of
the selected variables using RFC and SVC. Analyzing
the receiver operating characteristic curves, both models
demonstrated commendable predictive capabilities. RFC
yielded a mean area under the curve (AUC) of 0.81 (SD 0.06)
and a mean accuracy of 0.82 (SD 0.02), while SVC followed
closely with a mean AUC of 0.76 (SD 0.05) and a mean
accuracy of 0.78 (SD 0.01). The overlapping SDs of these
scores suggest that the differences in their performance are
not statistically significant.
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Figure 3. Receiver operating characteristic curves for 5-year mortality predictive models. The predictive efficacy of the selected features was
ascertained using Random Forest Classification and Support Vector Classifier. Results are presented as the mean of ROC and AUC values derived
from 5-fold cross-validation. AUC: area under the curve; ROC: receiver operating characteristic; SVC: Support Vector Classifier.

The overall relative importance of variables for the prediction
of the 5-year outcome was also determined by RFC (Table
3). Age, tumor size, and hemoglobin were the top predictors,
closely followed by lymphocyte count and BMI. Curiously,
the cancer grade, axillary lymph nodes involvement, and the
presence of comorbidities ranked low in overall importance.

This indicates that although typically taken as important
factors from a clinical perspective, comorbidities and cancer
grade alone are not the best prognostic features in a patient;
rather, a patient’s overall biological profile may be more
valuable, underscoring the usefulness of manifold learning as
a prognostic tool.

Table 3. Overall importance of predictors according to Random Forest Classification.
Variable Importance (%)
Age 18.33
Tumor size 17.26
Hemoglobin (g/dL) 16.41
Lymphocytes (g/L) 14.84
BMI 13.06
Lymph nodes involvement 10.39
SBRa grade 4.06
ERb status 2.88
Comorbidities 2.78

aSBR: Scarff-Bloom-Richardson.
bER: estrogen receptor.

Model Stability
Patients in the test and model groups from the same cluster
of origin were compared to evaluate whether data points
would exhibit similar distributions (appear in proximity to
each other) in the new manifold space across 10 different
manifold initializations. The distributions of the test group
(n=140) consistently matched closely with those of the model
group (n=326), with all P values being above the threshold of
.05 indicating a lack of significant variation between groups
(Figure S1 in Multimedia Appendix 1).

Prognostic Ability
The primary objective of our study is to evaluate the
prognostic ability of the manifold learning model, as
measured by the 5-year survival rate of our population. The
3D clusters in Figure 1 illuminated the landscape of our
dataset, representing local groups of patients characterized by
distinct clinical and prognostic profiles. Clusters are colored
based on the overall mortality rate of included patients:
Groups 0, 1, and 4 in green have the best prognosis with a
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5-year survival rate of more than 80% while group 3 has the
worst prognosis with a 5-year mortality rate of at least 35%.

Table 4 further elucidates the variability in values
across the patient clusters, especially in BMI, tumor size

(in mm), and median age, underscoring the diversity in our
cohort.

Table 4. Characteristics of the 6 clusters defined by manifold learning.

Feature
Cluster
0 1 2 3 4 5

Hemoglobin (g/dL) 13.4 13.3 13 13 13.3 11.9
BMI 25 28.4 24.9 28.9 25.6 23
Lymph nodes involved 0.6 0.8 1.6 6.2 1 0.8
Tumor size (mm) 19.6 19.3 26.1 65.8 23.1 30.6
Age (years) 75.8 76.3 77.8 77.4 79.2 80.5
Lymphocytes (g/L) 1.8 2.1 2.1 1.6 3.4 1.6
Comorbidities 0 1 0.4 0.3 0 0.9
Estrogen receptor status 1 1 0 0.8 1 1
SBRa (high/low) 0 0.1 0.7 0.5 0.8 0.6

aSBR: Scarff-Bloom-Richardson.

Predictive Ability
Next, we attempted to ascertain the individual benefit of
performing adjuvant chemotherapy, demonstrated in Figure
4 with 3 examples.

JMIR CANCER Heudel et al

https://cancer.jmir.org/2025/1/e64000 JMIR Cancer 2025 | vol. 11 | e64000 | p. 9
(page number not for citation purposes)

https://cancer.jmir.org/2025/1/e64000


Figure 4. Three case examples assessing the individual benefit of adjuvant chemotherapy. (A) The closest chemotherapy-treated and non–chemother-
apy-treated patients to a new patient are identified in the 3D manifold and their survival curves are compared to show the treatment’s potential benefit
or lack thereof. (B) The new patient’s position in the 3D manifold (black star), with the 15 closest patients of each treatment groups are shown,
displaying varying distributions of treatment subgroups. (C) To quantify distances between the subgroups, the real calculated KL divergence between
the treatment groups’ distributions (red line) was compared with that of permutated data (blue histograms) to verify whether observed divergences
between treatment subgroups are significant or not. KL: Kullback-Leibler.

When a target patient is localized in the 3D manifold, the
closest patient profiles are identified. This is done for 2
treatment groups based on whether the patients received
chemotherapy (chemo and nonchemo groups), permitting the
visualization of KM survival curves that would show the
treatment’s potential benefit or lack thereof (Figure 4A).

Figure 4B shows the target patient’s position in the 3D
manifold (black star), with the 15 closest patients of each
treatment groups also marked. In examples 1 and 2, the 2
treatment groups are found to be well “mixed” in the local
vicinity of the target, indicating that the target profile is
well represented by similar chemotherapy-treated and non–
chemotherapy-treated patients. To quantify distances between
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the subgroups, we used permutation analysis (Figure 4C).
The real calculated KL divergences between the treatment
groups’ distributions (red line) for examples 1 and 2 fall well
within the range of what could be expected by chance (blue
histograms) (P>.1), indicating that the observed divergences
are not significant.

Example 3 showcases a situation where patients from the
2 treatment groups are not well mixed in the local vicinity
of the target patient. In this case, the real KL divergence is
far right of the histogram (P<.01), suggesting a significant
difference between the distributions. Thus, the KM survival
curves and any conclusion drawn from them must be taken
with consideration of the heterogeneity in the profiles of the
treatment groups being compared.

Discussion
Principal Findings
From an initial cohort of 1229 patients, we used 793 (65%)
to develop a model that clustered patients by their clinical
and biological features. These clusters represent a potential
prognostic tool for physicians, attributing a risk of mortal-
ity in 5 years to patients with consideration to multivariate
profiles. The model is further able to indicate the potential
benefit or lack thereof of chemotherapy treatment in older
adult patients. We found that the predictors used in our model
gave a good overall result of 0.81 and 0.76 AUCs with RFC
and SVC, respectively.

In summation, our multifaceted approach, blending
manifold learning with classical machine learning paradigms
and intuitive data visualizations, has unveiled profound
insights into the prognosis determinants of early-stage breast
cancer in older adults. These revelations bring a more
nuanced understanding of the disease and hold promise for
tailoring patient-specific therapeutic strategies. Our study’s
utilization of manifold learning and advanced machine
learning algorithms represents a significant contribution to
oncology. The accuracy of 81% in differentiating patient
subgroups through manifold learning is impressive, showcas-
ing an advancement beyond traditional linear models [33].
This approach is in line with recent trends in personalized
medicine [34,35], which discuss the potential of machine
learning in cancer prognosis. The high AUC values achieved
by RFC and SVC reflect the importance of our combined
predictors in medical diagnostics, aligning with the findings
of recent studies on the application of machine learning
in cancer detection [36,37]. The application of data visuali-
zation techniques such as heatmaps and 3D scatterplots in
elucidating complex clinical relationships is noteworthy. This
approach is supported by advancements in data visualization
in medical research, as seen in the study by Borkin et al [38]
on how data visualization supports medical decision-making
[39,40].
Limitations
The present results should be interpreted in the light of
some limitations. First, the monocentric nature of the research

may impact the representativeness of the cohort, potentially
affecting the generalizability of our findings. Second, the
exclusion of specific patient characteristics, such as the
ONCODAGE score [41], from our datasets may have limited
the comprehensiveness of our prognostic tools. Third, the
retrospective design of the study constrains our ability to
establish causality between clinical characteristics and patient
outcomes. A fourth limitation concerns the fact that patients
may present with or have a history of multiple comorbidities.
We chose to group together patients with any number of
comorbidities for reasons related to (1) the reduction of the
sample size for each category of comorbidity, and (2) the
potential skewing of patient distribution in the 3D mani-
fold due to multiple related qualitative variables. PaCMAP
is susceptible to “overseparate” the population if provided
with too many binary features. These reasons in mind, we
nonetheless acknowledge that omitting the consideration of
multiple comorbidities is a limitation of the study. Other
notable limitations include the absence of cancer-specific or
treatment-specific survival metrics, a lack of detailed analysis
on specific comorbidities, and the need for more data to
enhance the less populated clusters. Furthermore, the external
validation of our model remains pending, which is crucial for
assessing its generalizability.
Future Prospects
Looking forward, the promising application of manifold
learning in oncology, as demonstrated in our study, aligns
with the burgeoning field of personalized medicine. The
integration of machine learning in personalized cancer
therapy, as discussed by Danishuddin et al [42], supports
the potential of such approaches. The development of
advanced AI-driven prognostic tools, particularly for older
adult patients who are often underrepresented in clinical
trials, could revolutionize treatment guidelines and care
approaches. The rapid advancement of machine learning
techniques poses a challenge in ensuring the longevity and
relevance of models, necessitating continuous updates. This
is echoed in the broader context of AI in health care, as
discussed in Topol’s [43] comprehensive review of AI in
medicine. Concerns about the adoption of AI tools due to
accuracy, explainability, and ethical considerations are also
prevalent, as reflected in the exploration of implementing
AI in clinical practice by Char et al [44]. Our findings may
open up avenues for the personalized treatment specifically
catered to neglected populations in oncology, starting with
geriatric patients with breast cancer. We expect our soft-
ware to provide rapid guidance to physicians in the proc-
ess of charting treatment plans for their patients, going
beyond simple monovariate statistics and instead considering
patients’ combined clinical and biological profiles.
Conclusions
Our study aimed to further the management of early
breast cancer in older adult patients by integrating cutting-
edge AI techniques. We proposed a technique that uses
patient data to create a visualizable 3D map of pathology
profiles that allow rapid prognostic estimations for new
patients. These prognostic predictions include the potential
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benefits of treatment strategies such as chemotherapy, aiding
clinical decision-making. It reflects the ongoing evolution in
oncology, emphasizing the importance of tailored treat-
ment strategies and highlighting both the potential and the

challenges of AI applications in health care. This study also
prompts considerations for future research directions and
ethical implications in the rapidly evolving field of AI in
medicine.
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Multimedia Appendix 1
Stability analysis of manifold learning applied to clustered data. The original cohort data were divided into 2 groups; 70%
of every cluster was pooled into the model group, and the remaining 30% was pooled into the test group. A fresh manifold
learning process was applied to the model group, and the test group was then projected onto the newly generated manifold.
Patients in the test and model groups from the same cluster of origin were compared to evaluate whether they would exhibit
similar distributions (appear in proximity to each other) in the new manifold space. (A) Examples of permutation analysis of
clusters 0 and 1. The permutation test determined whether the observed KL (red line) divergence was significantly different
from what can be expected from random shuffling of the 2 groups (blue histograms). (B) Table summarizing the median P
values of the stability tests across 10 different manifold initializations. All P values above .05 indicated a lack of significant
variation between groups.
[PNG File (Portable Network Graphics File), 214 KB-Multimedia Appendix 1]
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