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Abstract
Background: Artificial intelligence (AI) is a revolutionary tool yet to be fully integrated into several health care sectors,
including medical imaging. AI can transform how medical imaging is conducted and interpreted, especially in cardio-oncol-
ogy.
Objective: This study aims to systematically review the available literature on the use of AI in cardio-oncology imaging to
predict cardiotoxicity and describe the possible improvement of different imaging modalities that can be achieved if AI is
successfully deployed to routine practice.
Methods: We conducted a database search in PubMed, Ovid MEDLINE, Cochrane Library, CINAHL, and Google Scholar
from inception to 2023 using the AI research assistant tool (Elicit) to search for original studies reporting AI outcomes in adult
patients diagnosed with any cancer and undergoing cardiotoxicity assessment. Outcomes included incidence of cardiotoxicity,
left ventricular ejection fraction, risk factors associated with cardiotoxicity, heart failure, myocardial dysfunction, signs
of cancer therapy–related cardiovascular toxicity, echocardiography, and cardiac magnetic resonance imaging. Descriptive
information about each study was recorded, including imaging technique, AI model, outcomes, and limitations.
Results: The systematic search resulted in 7 studies conducted between 2018 and 2023, which are included in this review.
Most of these studies were conducted in the United States (71%), included patients with breast cancer (86%), and used
magnetic resonance imaging as the imaging modality (57%). The quality assessment of the studies had an average of 86%
compliance in all of the tool’s sections. In conclusion, this systematic review demonstrates the potential of AI to enhance
cardio-oncology imaging for predicting cardiotoxicity in patients with cancer.
Conclusions: Our findings suggest that AI can enhance the accuracy and efficiency of cardiotoxicity assessments. However,
further research through larger, multicenter trials is needed to validate these applications and refine AI technologies for routine
use, paving the way for improved patient outcomes in cancer survivors at risk of cardiotoxicity.
Trial Registration: PROSPERO CRD42023446135; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023446135
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Introduction
The World Cancer Research Fund International reported 18.1
million cancer cases in the year 2020, with breast and lung
cancer being at the top of the list, representing 12.5% and
12.2% of all cases, respectively [1]. Breast cancer is the most
commonly diagnosed type of cancer globally [2]. In 2020, the
International Agency for Research on Cancer reported 27,885
new cancer cases, with nearly 47% of these cases ending with
death [3].

In the United States, there are currently 17 million
cancer survivors; by 2030, that number is predicted to rise
to 22 million. For many cancer survivors, cardiovascular
disease (CVD) is the leading cause of noncancer morbidity
and mortality. Studies show that compared to the general
population, patients with cancer have a 2‐6 times higher
chance of dying from CVD. Considering the progress made in
cancer therapies and the decrease in cancer-related fatalities,
comprehensive cardiovascular care is essential to improving
these patients’ overall results [4].

In recent years, there has been a notable advancement in
the fight against cancer. However, a new problem has come
to light: the potential for lifesaving cancer treatments to cause
unintended damage to the heart. This is where cardio-oncol-
ogy, a rapidly developing field, comes into play. It focuses
on the crucial relationship between cancer treatment and heart
health, focusing on controlling and preventing cardiovascular
toxicity [5].

Cardiovascular toxicity, commonly known as cardiotoxic-
ity, defined by the 2022 European Society of Cardiology
Cardio-Oncology guidelines, is the term used to describe the
harm inflicted upon the heart muscle or cardiovascular system
due to different cancer treatments. Although chemotherapy
and radiation therapy are essential tools in the fight against
cancer, they can have negative side effects on the heart. These
adverse effects can include anything from mild alterations
in cardiac function to potentially fatal issues, including heart
failure [6].

According to the American Society of Clinical Oncology
(ASCO), the survivorship of cancer in the United States is
approximately 67% and 18% for 5 and 20 years or more
after diagnosis, respectively [7], especially if diagnosed early
[8]. However, patients receiving cancer treatments such as
chemotherapy, radiotherapy, and targeted agents have a 20%
chance of developing myocardial dysfunction, with up to
7% to 10% having cardiomyopathy or heart failure [9]—in
other words, therapy-induced cardiotoxicity [10,11]. Therapy-
induced cardiotoxicity depends on the type of treatment, such
as mediastinal and left-sided radiotherapy, anthracycline-
based chemotherapy, and trastuzumab (targeted therapy), and
other risk factors such as age, stage of diagnosis, ethnicity,
and pre-existing CVDs [12].

Trastuzumab is a targeted therapy that uses drugs and
other substances to precisely identify and attack specific
types of cancer cells [13]. It is a humanized immunoglobu-
lin G1 monoclonal antibody that is used to treat HER2+
(human epidermal growth factor receptor 2) breast cancer.
Recently, it has also been approved to treat HER2+ advanced
gastric cancer. The use of trastuzumab on patients with
HER2+ breast cancer, which constitutes 20% of breast
cancer cases, has demonstrated a significant reduction in
recurrence risk, morbidity, and mortality. However, not all
patients with HER2+ breast cancer respond to trastuzumab
treatment due to resistance [14]. Recently, targeted therapy
has been increasingly used in treating cancer, which has
resulted in a significant improvement in the overall survival
of patients with cancer. However, it can cause systemic
toxicity, particularly cardiovascular toxicity [15].

Moreover, one of the most effective chemotherapy agents
for several cancer types is anthracycline-based chemother-
apy [16]. The American National Cancer Institute defines
anthracycline as a type of antibiotic extracted from certain
types of Streptomyces bacteria; it kills cancer cells by causing
damage to their DNA and interfering with their reproduc-
tion [17,18]. The anthracycline chemotherapy agents include
doxorubicin, epirubicin, daunorubicin, idarubicin, mitoxan-
trone, and valrubicin [18]. Although anthracyclines have been
proven effective in treating various types of cancer, they
do not come without adverse effects, which can limit their
therapeutic potential [16]. These adverse effects range from
mild and short-term to severe and long-term side effects [19].
Thus, early detection of cardiac dysfunction or cardiotoxic-
ity allows the administration of the appropriate cardiac care,
improving the overall outcome [20].

Long-term, dose-dependent risks of cardiotoxicity with
anthracyclines are well-established [19]. Therefore, the
recommended current practice by ASCO is a comprehensive
assessment before initiating the treatment that includes a
history and physical examination, screening for CVD risk
factors, and an echocardiogram [21]. ASCO also recom-
mends that clinicians manage modifiable cardiovascular risk
factors (smoking, hypertension, diabetes, and obesity); the
clinicians may incorporate several strategies, such as the use
of dexrazoxane for cardioprotection, continuous infusion, or
liposomal formulation of doxorubicin during the administra-
tion of anthracycline therapy [21]. In addition to cardiac
imaging during the routine clinical assessment before therapy
initiation (echocardiogram and cardiac magnetic resonance
imaging [MRI]), ASCO recommends routine surveillance for
cardiac function in patients considered to be at increased risk
of developing cardiac dysfunction or heart failure [21,22].

The current method for cardiac function surveillance is
“echocardiography” [14] to assess the left ventricular ejection
fraction (LVEF) and the global longitudinal strain (GLS)
[23]. Echocardiography has many advantages, making it the
first modality of choice to monitor cardiotoxicity. These
advantages include its ability to provide real-time imaging;
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availability and accessibility; noninvasiveness; and low cost
[23]. However, echocardiography has limitations that hinder
the detection of early signs of cardiotoxicity. Some of these
limitations include the fact that echocardiography is entirely
user-dependent, subjectivity in results interpretation, and
variability in the image quality [23]. These limitations can
result in the inability to detect subclinical cardiotoxicity and
the early signs of cardiac dysfunction, which are crucial for
personalized treatment plans that aim to improve the patient’s
prognosis [23]. Moreover, other CVD manifestations, such
as myocardial perfusion and mitochondrial dysfunction, may
precede a myocardial injury detected by echocardiography;
this can only be recognized by a higher level of imaging
modalities, which use targeted radiotracers such as cardiac
magnetic resonance imaging (CMR) and nuclear imaging to
provide information on specific mechanisms of cardiotoxicity
[24].

With the recent emergence of artificial intelligence (AI)
and machine learning (ML), their applications have meritori-
ously contributed to many advancements, with a promising
potential for more across different areas, including imaging
in the medical field [23,25]. One of the potential advance-
ments is the rise of stable diffusion, a generative model; it is
anticipated that it might fill the gap in low-quality medical
images by generating data on the missing details of the
pathology with pattern recognition [25,26]. AI can generate
this data by processing large amounts of readily available
imaging data through artificial neural networks inspired by
the connectionism of the biological neural network in the
brain [25]. Tasks executed by AI algorithms in medical image
processing include image acquisition, analysis, segmentation,
feature extraction, visualization, registration, and classifica-
tion [25]. Using AI-augmented imaging in the assessment of
cardiotoxicity can help in recognizing subclinical cardiotox-
icity caused by anthracyclines in addition to being able
to reproduce the images more accurately by enhancing the
imaging quality produced by the echocardiograph, which
eventually will allow better monitoring and earlier detection
of cardiac dysfunction [27]. For more detailed definitions of
cancer treatments, cardiovascular toxicity, imaging modali-
ties, and the application of AI in healthcare, please refer to
Multimedia Appendix 1.

Despite its potential, the evidence base of AI imaging
solutions for cardiovascular care in general and predicting
cardiotoxicity in particular has been limited to date. There-
fore, further research about AI’s usefulness and effectiveness
in the routine practice of cardio-oncology care is necessary.
This systematic review aims to review the available litera-
ture on the use of AI in cardio-oncology imaging to predict
cardiotoxicity and describe the possible improvement of each
modality for cardio-oncology imaging when deploying AI to
routine practice.

Methods
This systematic review was conducted according to the
PRISMA (Preferred Reporting Items for Reviews and
Meta-Analyses) guidelines from July 1 to August 1,

2023. The review is registered in PROSPERO (Inter-
national Prospective Register of Systematic Reviews;
CRD42023446135).

Search Strategy
The literature search for this review was performed using
PubMed, MEDLINE, Cochrane Library, CINAHL, and
Google Scholar for relevant studies from inception until June
2023. An AI research assistant (Elicit) was also used to search
for relevant papers using the same terminology. In addition,
PROSPERO was searched for ongoing similar systematic
reviews. The first and senior authors are experienced in
systematically reviewing the literature and have published
several reviews. In addition, the authors have consulted
experts using Editage services to achieve a high level of
reliability. Please see Multimedia Appendix 2 for a detailed
search strategy.

Terminology
In order to achieve the objective of this review, the databa-
ses were searched using keywords and their Medical Subject
Headings (MeSH) terms connected by the Boolean operators
“AND,” “OR,” and “*.”

The search used the following terms and their MeSH
terms: artificial intelligence, AI, deep learning, machine
learning, cardio-oncology, cardiotoxicity, cardiac toxicity,
cancer treatment, cancer therapy, “artificial intelligence,”
“machine learning,” “AI augmentation,” “deep learning,” OR
“AI” AND “Cardio-oncology,” “Cardiotoxicity,” “Cardiovas-
cular toxicity,” OR “Cardiac toxicity” AND “chemotherapy,”
“anthracycline,” “cytotoxic regimens,” “immunotherapy,”
“Cancer treatment,” OR “therapy-induced” AND “Imaging,”
“Echocardiogram,” “Echo*,“ “Cardiac magnetic resonance
imaging,” “CMR,” “Multigated acquisition,” “MUGA,”
“Cardiac computed tomography,” OR “CCT.”

Eligibility Criteria and Study Selection
Original studies reporting AI outcomes in adult patients
diagnosed with any type of cancer and undergoing cardiotox-
icity assessment were included. Outcomes included inci-
dence of cardiotoxicity, LVEF, risk factors associated with
cardiotoxicity, heart failure, myocardial dysfunction, signs of
cancer therapy–related cardiovascular toxicity (CTR-CVT),
echocardiography, and CMR. Non-English studies, case
reports, literature reviews, studies on children, and studies
that did not include CTR-CVT were excluded from this
review.
Quality Assessment
The first, second, and third authors (MR, HM, and AR)
independently assessed the included articles according to
the 42-item Checklist for Artificial Intelligence in Medi-
cal Imaging (CLAIM) [28]. CLAIM is modeled after the
Standards for Reporting of Diagnostic Accuracy Studies
guideline. It addresses the application of AI in medical
imaging, including classification, image reconstruction, text
analysis, and workflow optimization [28]. Subsequently, the
first, second, and third authors cross-checked each other’s
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articles, and conflicts were resolved through group discus-
sion.
Risk of Bias
Finally, both HM and AO independently assessed the risk
of bias for each study across ROBINS-I’s (risk of bias
in nonrandomized studies - of interventions) 7 domains:
confounding, selection of participants, classification of
exposures, deviation from intended exposure, missing data,
measurement of outcomes, and selection of reported results.
Each domain was rated as low, moderate, serious, or critical
based on the each domain’s algorithm, with the most severe
rating across all domains determining the overall assessment
for each study. Any disagreements in the assessments were
discussed until a consensus was reached, with one reviewer
(DJ) ensuring consistent application of judgments. Addition-
ally, we engaged a fifth-year medical student experienced in
systematic reviews and various research projects to independ-
ently evaluate the risk of bias for all included studies using
the same tool.
Statistical Extraction and Analysis
According to the CLAIM checklist, the first, second, and third
authors (MR, HM, and AR) extracted data from the included

studies. All discrepancies were resolved after a discussion,
with HM acting as an arbitrator. Descriptive information
about each study was recorded, including publication details
(author, year, and country), sample size, cancer type,
imaging technique, AI model, outcomes, and limitations. AO
performed analysis, and figures were generated using RStudio
(version 2023.06.0; Posit PBC).

Results
Study Selection
A total of 883 articles were identified in the database search,
comprising 593 articles from PubMed, 267 from MEDLINE,
2 from CINAHL, and 21 from Elicit. After eliminating
duplicate titles and articles in non-English languages, 617
articles remained. Then, the title and abstract of the 617
articles were screened independently by the first and second
authors (MR and HM), and 44 remained. The authors
reviewed full texts and 7 articles met the inclusion criteria
(Figure 1).

Figure 1. PRISMA flow diagram of the systematic search of the databases for artificial intelligence in cardio-oncology imaging. PRISMA: Preferred
Reporting Items for Reviews and Meta-Analyses.

Quality Assessment of Included Studies
The quality assessment used the 42-item CLAIM. The
distribution and percentages of different sections and items
of CLAIM compliance are depicted in Figures 2 and 3. These

sections include title/abstract, introduction, methods, results,
discussion, and other information. Each section is categorized
into “No” and “Yes” groups, indicating whether it is reported
in the selected articles.
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Figure 2. CLAIM sections compliance. CLAIM: Checklist for Artificial Intelligence in Medical Imaging.

Figure 3. CLAIM items compliance. CLAIM: Checklist for Artificial Intelligence in Medical Imaging.
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Based on the data, the title/abstract section was compliant
in 93% of the articles (1 article was compliant with the title
but not the abstract, which was considered as half compli-
ant). An introduction section was included in all 7 articles,
representing 100% compliance. Methods had 77% compli-
ance, results represented 77% compliance, and there was a
discussion in 93% of the articles, while other information was
76% compliant. Items 5 and 6 of the checklist—specific to
the study methodology and design—were met as follows: 5
studies were conducted prospectively, while the remaining
2 were conducted retrospectively. Moreover, 4 studies were
reported as feasibility studies, 2 were exploratory studies, and
1 was a model creation study. Finally, items 10 and 27 of the
CLAIM criteria did not apply to the 7 studies.
Characteristics of the Included Studies
In total, 7 studies conducted between 2018 and 2023 were
included, with 5 from the United States (Kar et al [29-31],

Zhang et al [32], Edalati et al [33]), 1 from China (Shen et
al [34]), and 1 from Taiwan (Chang et al [35]). Of these, 6
studies involved patients with breast cancer with additional
cancers (eg, sarcoma, lymphoma, leukemia) in some cohorts.
Imaging modalities included MRI (4 studies: 3 displacement
encoding with stimulated echoes [DENSE] MRI, 1 CMR),
echocardiography (n=2), and nongated, noncontrast chest
computed tomography (CT) (n=1). AI approaches varied: 4
studies (57%) used convolutional neural networks (CNNs), 1
(14%) used ML, and 6 (86%) implemented image segmenta-
tion. Table 1 provides demographic and descriptive data and
Table 2 provides details of the AI components of the included
studies.

Table 1. Summary of the studies included in this review: demographic and descriptive data.
Author, year,
country

Study
design Sample size Gender Age (years) Treatment Cancer type Imaging technique

Shen et al,
2023, China
[34]

Retrospec-
tive,
multicenter

N=1468 Male: n=785,
female: n=683

>60: n=617,
<60: n=851

Anthracycline Diffuse large B-
cell lymphoma

Nongated and noncontrast
chest computed tomogra-
phy for coronary artery
calcium scoring
echocardiography for
cancer therapy–related
cardiac dysfunction and
major adverse cardiovas-
cular event

Chang et al,
2022, Taiwan
[35]

Prospective,
single
center, with
3 years of
follow-up

N=211 n=211 55.8 (SD
10.28)

Anthracycline,
trastuzumab

Breast cancer;
stage I: n=50; stage
II: n=101; stage III:
n=52; stage IV:
n=8

Echocardiography

Kar et al,
2023, United
States [31]

Prospective N=32 Female n=32 Baseline: 59.4
(SD 9.7); 3
months: 59.6
(SD 9.7); 6
months: 59.6
(SD 9.7)

Anthracycline,
trastuzumab,
radiotherapy

Breast cancer • DENSEa

• Magnetic
resonance imaging

• Transesophageal
echocardiogram

Kar et al,
2022, United
States [30]

Prospective IGb: n=30; CGc:
n=30

IG female:
n=30; CG
female: n=30

IG: 54 (SD 9),
CG: 50 (SD 13)

Anthracycline,
trastuzumab

Breast cancer • DENSE
• Magnetic

resonance imaging
Kar et al,
2021, United
States [29]

Prospective N=42 Female: n=42 55.5 (SD 8.6) Anthracycline,
trastuzumab

Breast cancer • DENSE
• Magnetic

resonance imaging
Zhang et al,
2018, United
States [32]

Retrospectiv
e, 10 years

Hypertrophy
cardiomyopathy:
n=260; echo:
n=14,035;
amyloidosis: n=81;
CICd: n=152;
pulmonary arterial
hypertension: n=27

CIC female:
n=152

CIC: 55 Trastuzumab,
pertuzumab

Breast cancer Echocardiography

Edalati et al,
2022, United
States [33]

Prospective CG: n=10, IG: n=10 CG male: n=5;
CG female:
n=5: IG male:
n=5; IG female:
n=5

CG: 52.6 (SD
21.2); IG: 47.6
(SD 13.6)

Not applicable Breast cancer: n=4,
sarcoma: n=3,
lymphoma: n=1,
leukemia: n=1,
myeloma: n=1

Cardiac magnetic
resonance imaging

aDENSE: displacement encoding with stimulated echoes.
bIG: intervention group.
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Author, year,
country

Study
design Sample size Gender Age (years) Treatment Cancer type Imaging technique

cCG: control group.
dCIC: chemotherapy-induced cardiotoxicity.

Table 2. Summary of the studies included in this review: details of the artificial intelligence components in the included studies.
Author, year,
country Artificial intelligence solution Main outcomes Limitation
Shen et al,
2023, China [34]

Artificial intelligence coronary artery calcium scoring:
• Deep learning algorithm
• Image segmentation
• Bound the range of the heart area
• Detect and segment the calcified lesions in

coronary arteries
• Calculate coronary artery calcium score

• Cancer therapy–related cardiac
dysfunction

• Major adverse cardiovascular
events

• A larger sample is needed to
validate the model’s accuracy

• The study was limited to
Chinese patients

Chang et al,
2022, Taiwan
[35]

Machine learning:
• Multilayer perceptron
• A tree-based estimator was used to compute

essential features, and 15 features were
included in our multilayer perceptron model
based on experts’ judgments.

• Cancer therapy–related cardiac
dysfunction

• Symptomatic heart failure with
reduced ejection fraction

• A relatively small number of
included patients

Kar et al, 2023,
United States
[31]

Validated advanced artificial intelligence
methodologies (DeepLabV3+) with fully
convolutional networks:

• Segmenting the DENSEa magnitude images for
chamber quantification

• Segmenting the DENSE phase images for
phase-unwrapping and 3D strain analysis

• Global longitudinal strain
• Cancer therapy–related cardiac

dysfunction
• Adverse cardiac events

• Single-center study without
external validation

• No integration between
cancer therapy–related cardiac
dysfunction risk analysis by
combining circulating troponin
levels with global longitudinal
strain measurements for a
practical bivariable prognostic
approach

Kar et al,
2022,
United States
[30]

An FCNb-based solution adapted from the
DeepLabV3+ network:

• Phase-unwrapping FCN.
• Compared with conventional unwrapping

techniques, validation via phantom setup with
known displacements and 3D strain analysis in
healthy patients.

• Left ventricular volume was estimated with
previously validated DeepLabV3+.

• Computation of 3D myocardial strains with the
meshfree Radial Point Interpolation Method

Global longitudinal strain
• Comparing the performance

of phase unwrapping with
DeepLabV3+ to another FCN
such as PhaseNet.

• The relationship between the
wrapped phase and wrap count
can be leveraged with more
arbitrary shapes rather than
round and ellipsoidal shapes
only.

Kar et al, 2021,
United States
[29]

An automated left ventricular chamber quantification
tool (deep learning):

• DCNNc and DeepLabV3+ with ResNet-50
backbone

• Some layers of the original ResNet-50 to tailor
DCNN for cardiac image segmentation

• DENSE-based results were validated by
corresponding steady-state free precession data
in the same patients who were trained using an
identical DeepLabV3+ DCNN.

• Chamber quantification and strain analysis
were done after the image-based reconstruction
of the full 3D left ventricle.

• Left ventricular end diastolic
diameter

• Left ventricular ejection
fraction

• Myocardial strains analyzed
with the radial point
interpolation method

• Backbone networks such
as Xception, Inception,
ResNet-101, U Net, and others
were not tested for left
ventricular segmentation.
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Author, year,
country Artificial intelligence solution Main outcomes Limitation
Zhang et al, 2018,
United States
[32]

A computer vision pipeline for automated 2D
echocardiogram interpretation:

• Convolutional neural network for view
classification

• Image segmentation
• Measurements of cardiac structure and function

disease detection

• Automated identification of
23 viewpoints segmentation
of cardiac chambers across 5
common views

• Quantification of structure and
function

• Detection of hypertrophic
cardiomyopathy

• Detection of cardiac amyloid
• Detection of pulmonary

arterial hypertension

• Problems with segmentation
• Forced normalization to the

lower strain value because of
the lack of electrocardiogram
information, which can result
in biases in measurements,
estimate of strain

• Lack of distinguished
diagnosis of hypertrophy
cardiomyopathy, amyloid, or
any hypertrophic disease

• Lack of comparison of deep
learning models to onesbuilt
using hand-selected features
(left atrial mass or septal
thickness)

Edalati et al,
2022, United
States [33]

EasyScan:
• Otsu method: segment heart region
• Trained regression network: distance map

calculation

• Scan time difference
• Accuracy of cardiac plane

prescriptions
• Signal to noise ratio
• Contrast to noise ratio
• Overall image quality

(sharpness and magnetic
resonance image degradation)

• Ejection fraction
• Absolute wall thickening

N/Ad

aDENSE: displacement encoding with stimulated echoes.
bFCN: fully convolutional network.
cDCNN: deep convolutional neural network.
dN/A: not applicable.

The included studies revealed significant clinical heterogene-
ity across the studies. Study designs ranged from retrospec-
tive (eg, Shen et al [34]: n=1468; Zhang et al [32]: n=260) to
prospective (eg, Chang et al [35]: n=211; Kar et al [29-31]:
n=32‐42), impacting sample size and follow-up duration (eg,
3 years in Chang et al [35] vs 10 years in Zhang et al [32]).
Imaging modalities differed in application: echocardiography
(Chang et al [35], Zhang et al [32]) assessed LVEF and GLS;
DENSE MRI (Kar et al [29-31]) focused on strain analy-
sis; CT (Shen et al [34]) targeted coronary artery calcium
scoring (CACS); and CMR (Edalati et al [33]) evaluated
image quality and efficiency. AI techniques showed varied
sophistication—CNNs (eg, DeepLabV3+ in Kar et al [29-31],
CNN pipeline in Zhang et al [32]) and deep learning (Shen
et al [34]) enhanced segmentation and classification, while
ML with multilayer perceptron (Chang et al [35]) predicted
outcomes like heart failure with reduced ejection fraction.

Outcomes centered on CTR-CVT, with cancer ther-
apy–related cardiac dysfunction assessed in 5 studies (Shen
et al [34], Chang et al [35], Kar et al [31], Zhang et al
[32], Edalati et al [33]), GLS in 3 (Kar et al [29-31]), and
LVEF in 3 (Kar et al [29], Edalati et al [33], Zhang et al
[32]). Shen et al [34] uniquely linked CACS to major adverse
cardiovascular events (MACE). At the same time, Edalati et

al [33] emphasized scan time and signal-to-noise ratio. AI
improved detection accuracy (eg, automated CACS in Shen et
al [34], GLS computation in Kar et al [30,31]) and efficiency
(eg, EasyScan in Edalati et al [33]) compared to manual
methods. However, direct comparisons across studies were
limited by outcome diversity.

Common limitations included small sample sizes (eg,
Chang et al [35], Edalati et al [33]), single-center designs
(eg, Kar et al [31], Chang et al [35]), and lack of external
validation (eg, Kar et al [31]). Geographic restriction (Shen
et al [34], Chinese patients) and technical challenges (eg,
segmentation issues in Zhang et al [32]) further constrained
generalizability.
Risk of Bias Assessment
The risk of bias assessment began with general considera-
tions for all studies, which included establishing a minimal
set of confounders identified by the reviewers as likely to
introduce bias in the observed associations. Next, each study
was described individually within the framework of an ideal
target trial. The consensus results from the evaluations of the
7 nonrandomized studies are depicted in the “traffic light”
plot shown in Figure 4.
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Figure 4. Traffic light plot of risk of bias assessment.

Discussion
Summary of Included Studies
In 2018, Zhang et al [32] published their work on automat-
ing echocardiographic cardiac images using 14,035 echocar-
diograms collected retrospectively spanning 10 years. Their
study included 152 patients diagnosed with CTR-CVT and
other patients with other heart conditions such as hypertrophic
cardiomyopathy (n=260), amyloidosis (n=81), and pulmonary
arterial hypertension [32]. Zhang developed a model for
view classification in just a few steps. First, they taught
the machine to recognize individual echocardiographic views,
where models were trained using manual labels assigned to
individual images. Then, they used deep learning architecture
for view classification, designed to mimic how the visual
system works [32]. This process refers to multiple layers
of neurons, processing nodes tuned to recognize features
within an image. Afterward, they trained a 13-layer CNN and
assessed the accuracy using 5-fold cross-validation. Finally,
they used t-distributed stochastic neighbor embedding (an
algorithm for visualizing high-dimensional data) to cluster the
output of the top layer to visualize the output of their view
classification network [32]. By training the CNNs, Zhang
could perform image segmentation to locate cardiac chambers
that derived cardiac structure and function measurements to
develop disease classification models [32]. Zhang’s approach
is intended to enable data mining and knowledge extraction
from the enormous number of archived echocardiograms,
which will have a significant clinical impact by introducing
relatively low-cost quantitative metrics into clinical practice
and enabling causal insights that require systematic longitu-
dinal tracking of patients [32]. The study results favored

using AI-automated measurements over manual measure-
ments across 11 internal consistency metrics. One of these
is the correlation between left atrial and left ventricular
volumes. This work is argued to have laid the basis for using
automated interpretation to support serial patient tracking.
Limitations to the study are the length of the analysis period
and room for bias. Moreover, the study did not include the
number of males or females involved, which may affect the
results.

Using a different imaging modality, Edalati et al [33]
developed EasyScan, which is automated cardiac planning,
by developing, training, and validating 2 deep neural
networks on preacquired cardiac MRI datasets (also known
as cardiovascular magnetic resonance). EasyScan is imple-
mented with the CMR scanner for automatic slice planning
and shimming. The trial included 10 healthy individuals (5
males and 5 females) and 10 cardio-oncology patients (5
males and 5 females) undergoing 2 identical CMR proto-
cols (manual cardiac planning versus AI-based EasyScan)
to assess the time difference and accuracy of the cardiac
plane. Moreover, Cine images were obtained for the study
participants with standard cardiac volume shim and AI-
shim to assess the signal-to-noise ratio, contrast-to-noise
ratio, overall IQ (sharpness and magnetic resonance image
degradation), LVEF, and absolute wall thickening [33].
EasyScan demonstrated accelerated cardiac exams compared
to standard manual cardiac planning and achieved an
improved and more uniform B0 magnetic field homogeneity
using the AI-shim technique compared to volume shimming
[33]. Eldalati argued that his results suggest many potential
positive outcomes of implementing AI, including a more
straightforward and faster workflow chain by minimizing
technique complexity. However, a significant limitation of
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this study is the cohort size, as it is considered small
compared to other papers in this field.

Kar et al [29-31] used AI, deep learning, segmentation,
and fully convolutional networks (FCN) on the DENSE MRI
sequence imaging modality in their 3 studies. In the study
published in 2021, Kar et al [29] investigated the automa-
tion of measuring left-ventricular strain with a quantification
tool via segmentation with a supervised deep convolutional
neural network (DCNN) before strain analysis with DENSE
images [29]. Kar and her team were able to introduce a novel
and automated DCNN architecture–based chamber quantifi-
cation methodology for detecting the extent of left-ventric-
ular myocardium in single-scan DENSE MRI for patients
with breast cancer susceptible to cardiotoxicity. Kar et al
identified accurate segmentation, chamber quantification, and
subsequent strain analysis in the myocardium as the main
critical requirements for engineering and developing this
solution. After validation, Kar et al emphasized that their
DCNN-based segmentation can provide accurate estimates of
the left-ventricular chamber quantification required in strain
analysis.

Kar et al argued that their model can perform fast and
inexpensive automated measurements of cardiac strain as the
model can detect altered material properties. However, the
thresholds that define cardiac dysfunction caused by cancer
therapy are still an area that needs to be further studied [29].

In 2022, Kar and her team continued their work using
DENSE in developing another direct MRI-based, FCN-based,
deep-learning semantic segmentation approach for comput-
ing GLS for patients with breast cancer [30]. This time,
they computed myocardial strains directly from the unwrap-
ped phases with the radial point interpolation method. They
compared the results of 30 patients with 30 healthy individ-
uals, and the difference in GLS results between the partici-
pants demonstrated that the FCN is sensitive to unwrapping
left ventricular data in a heterogeneous cohort [30]. Moving
forward with their work on GLS computation, Kar and her
team investigated early alterations in prognostic factors such
as GLS with standard Cox proportional hazards regression
for estimating the risk of CTR-CVT incidents in patients
with breast cancer undergoing cancer treatment using their
previously developed AI-FCN.

Moving forward, Kar and her team carried out a trial
using their tool to estimate the risk of developing cardiotox-
icity in patients with breast cancer using data from their
previous studies [31]. The trial proved their hypothesis that
GLS computation can be used for early detection of CTR-
CVT as an independent prognostic method of left ventricu-
lar dysfunction [31]. The advantage Kar et al had in their
studies was that they were able to validate their solution
internally within their center. However, their trials did not
come without limitations. The solutions were not validated
externally with other centers, and there was a greater sample
for better accuracy measures [29-31]. In addition, the phase
unwrapping approach for GLS measures was not compared to
phase wrapping with another FCN, such as PhaseNet, which
is considered a significant limitation in their conclusion [30].

Concurrently, in 2022, Chang et al [35] conducted another
single-center prospective study and included a larger sample
size of 211 patients diagnosed with breast cancer at differ-
ent stages [35]. Chang et al [35] aimed to establish an
AI-based predictive model for CTR-CVT using a cardio-
oncology program. They prospectively collected clinical
information and echocardiographic images from patients with
breast cancer over 1 year. In their study, 2 echo techni-
cians performed an echocardiogram independently to measure
the LVEF at baseline, 3 months, 6 months, and 1 year
after patients received their treatment. A cardiologist with
a validated reliability and reproducibility interpreted the
images. Moving forward with the AI solution, data were
validated using a data mart for further analysis. Then, we
compared the accuracy, precision, sensitivity, specificity, and
area under the curve of the random forest, logistic regression,
support vector clustering, LightGBM, K-nearest neighbour,
and multilayer perceptron models. This process yielded the
best accuracy in predicting CTR-CVT [35]. Moreover, the
multilayer perceptron showed the best results in predicting
heart failure with a reduced ejection fraction as an early sign
of myocardial dysfunction after the occurrence of CTR-CVT
[35].

Shen et al [34] conducted the most recent study in China
in 2023. The study aimed to evaluate whether the pretreat-
ment CACS can stratify the risk of CTR-CVT and MACEs
in patients with diffuse large B-cell lymphoma (DLBCL).
They retrospectively collected nongated and noncontrast
chest CT scans of 1468 patients from 4 health centers in
China, then used a deep-learning–based algorithm software
(CACScoreDoc) to calculate the automatic CACS. CACScor-
eDoc automatically calculated the CACS and transmitted the
results to the doctors after uploading the CT images to the
software. The study showed that automating CACS derived
from chest CT scans done before receiving the treatment is
potentially helpful in identifying patients at risk of developing
CTR-CVT and MACEs in patients with DLBCL receiving
anthracycline chemotherapy, which can guide clinicians to
implement cardiovascular protective strategies and minimize
CTR-CVT in DLBCL patients [34].

Although cardiovascular events that are caused by cancer
medications vary in prevalence from one type of cancer and
its medication to another, they are still the second most
common cause of mortality in cancer survivors. To accurately
predict the risk of cardiotoxicity among individuals receiv-
ing cancer treatment is still a great challenge in the cardio-
oncology field due to high cost, limited access to care, and
inadequate compliance with screening protocols. Therefore,
noninvasive, low-cost, accessible, innovative approaches to
predict high-risk individuals and detect cardiotoxicity early
among patients with cancer are critically needed to enable
optimal screening, early diagnosis, and timely interventions
[36].
Current Versus Future AI Practice
The current tool used to investigate signs of cardiotoxicity is
medical imaging, with the 2 most used imaging modalities for
this purpose being the echocardiograph and CMR. However,
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although these modalities have helped the medical field to
achieve significant improvement in prognosis in this area,
some drawbacks hold them back from being optimal methods
of investigation. The echocardiograph is entirely user-depend-
ent in image reproducibility and results interpretation, leaving
ample room for bias and inconsistency. On the other hand, the
CMR is not always available due to its high cost. Therefore,
more robust, cost-effective methods and imaging protocols
are needed in this cardio-oncology area to optimize patient
care [36].

Many health care disciplines have moved toward
advancing artificial intelligence and developing better ML
algorithms as they continue to improve patient care quality
significantly. With the availability of enormous volumes of
patient data and accessibility of proper hardware, AI and
ML can accelerate the pace of change in health care. These
technologies can sift through the data and analyze it much
faster than humans, leading to increased efficiency. ML is
used to predict clinical risk factors by feeding it with an
enormous volume of data retrieved from patient medical
records or national datasets and registries or detect cardiotox-
icity via deep learning of patients’ cardiovascular images. In
this review, the authors focused their assessment on using AI
and ML in cardiovascular imaging to increase the diagnostic
strength and accuracy in detecting CTR-CVT.

This review included 7 studies that intended to assess
the implementation of AI in cardiovascular imaging among
patients with cancer. These studies examine the use of AI
on MRI, echocardiogram, and CT imaging modalities with
different AI technologies such as ML, CNNs, and image
segmentation.

The future of imaging AI in cardio-oncology holds
substantial promise. This convergence of cutting-edge
technologies, encompassing molecular imaging, wearable
devices, multiomics data, and predictive modeling, is poised
to transform cardiotoxicity management in patients with
cancer. These advancements enable early detection and
personalized risk assessment and promise targeted interven-
tions, ultimately enhancing patient outcomes and survivor-
ship. This future trajectory in imaging AI aligns with
the significant advancements witnessed from ML to deep
learning in AI, revolutionizing robotics and autonomous
systems’ capabilities and enabling them to perceive, learn,
and adapt with increased efficiency and accuracy in com-
plex environments. These models, leveraging AI algorithms
trained on diverse patient cohorts and multimodal imaging
data, could assist clinicians in formulating proactive strategies
for long-term cardiac care in cancer survivors, thereby
enhancing overall cardiovascular health and quality of life.
Challenges of AI in Health Care
As promising as AI and ML sound to the advancement of
imaging in health care and the prediction of the risk of
developing cardiotoxicity among patients receiving cancer
treatment specifically, there are methodological and practical
limitations preventing these technologies from reaching their
full potential. The evidence base needs more prospective

validation of the technology and current workflow, includ-
ing evidence on the length of analysis required for valida-
tion and the interoperator and interobserver variability to
eliminate manufactured variations that limit reproducibility
[23]. Moreover, their usefulness in health care depends on
incorporating the AI tool in clinical decision-making as part
of the clinical practice routine, and that concern needs further
investigation [37]. Another inadequacy of AI applications in
health care is the systematic biases affecting patient demo-
graphics, such as gender imbalance [38]. It is worth men-
tioning that AI requires training on all kinds of populations
with different demographics to guarantee equal performance
from one population to another. It is recommended that
multiple massive datasets be combined either retrospectively
or prospectively to improve the generalizability of the ML
process and the training of AI models, which was not
achieved by all the included studies in this review [39].
Review Limitations
The first limitation we had while conducting this review
was the limited published evidence in the literature about
the application of imaging AI in cardio-oncology to predict
CTR-CVT. Therefore, we could not specify the cancer type
or treatment under investigation. Second, even though there
is significant literature on AI and imaging with different
modalities, when we narrowed it down to our criteria, which
was patients with cancer who are undergoing cardiotoxic-
ity assessment, the literature search resulted in 3 different
imaging modalities rather than studying AI with one specific
imaging technique at a time. This resulted in different
outcomes that prevented us from proceeding with a meta-
analysis.

The use of AI in the medical field is a relatively new
research area. This review could be used to stimulate further
research. It can be used as groundwork for lab work to
improve AI models or inspire new ones. In addition, this
review highlights the positive outcomes of different studies
in this area and their limitations. It may encourage experts
to improve the AI and ML models and eventually implement
them into medical imaging, possibly leading to the advance-
ment of the field. However, given this field’s rapidly evolving
nature, additional studies may have been published since the
initial search process for this paper.
Conclusions
In conclusion, this systematic review highlights the prom-
ising potential of AI in enhancing cardio-oncology imag-
ing for predicting cardiotoxicity in patients with cancer.
Through analyzing 7 studies conducted between 2018 and
2023, it became evident that AI methodologies, including ML
and deep learning, can significantly improve the accuracy
and efficiency of cardiotoxicity assessments across various
imaging modalities, such as echocardiography and CMR.

The review underscores that AI-driven tools have
demonstrated improved clinical outcomes by enabling earlier
detection of cardiovascular complications associated with
cancer therapies. However, while the findings are encour-
aging, the limited number of studies and their varying
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methodologies indicate a need for further research. This
includes conducting larger, multicenter trials to validate AI
applications in diverse patient populations and refine these
technologies for routine clinical use.

In light of these insights, collaboration among data
scientists, health care professionals, and researchers is

essential to advancing AI’s integration in cardio-oncology.
This collaboration will pave the way for personalized
medicine approaches, ultimately enhancing patient care and
improving the quality of life for cancer survivors at risk of
cardiotoxicity.
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