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Abstract
Background: Cancer is a life-threatening disease and a leading cause of death worldwide, with an estimated 611,000 deaths
and over 2 million new cases in the United States in 2024. The rising incidence of major cancers, including among younger
individuals, highlights the need for early screening and monitoring of risk factors to manage and decrease cancer risk.
Objective: This study aimed to leverage explainable machine learning models to identify and analyze the key risk factors
associated with breast, colorectal, lung, and prostate cancers. By uncovering significant associations between risk factors
and these major cancer types, we sought to enhance the understanding of cancer diagnosis risk profiles. Our goal was to
facilitate more precise screening, early detection, and personalized prevention strategies, ultimately contributing to better
patient outcomes and promoting health equity.
Methods: Deidentified electronic health record data from Medical Information Mart for Intensive Care (MIMIC)–III was
used to identify patients with 4 types of cancer who had longitudinal hospital visits prior to their diagnosis presence. Their
records were matched and combined with those of patients without cancer diagnoses using propensity scores based on
demographic factors. Three advanced models, penalized logistic regression, random forest, and multilayer perceptron (MLP),
were conducted to identify the rank of risk factors for each cancer type, with feature importance analysis for random forest and
MLP models. The rank biased overlap was adopted to compare the similarity of ranked risk factors across cancer types.
Results: Our framework evaluated the prediction performance of explainable machine learning models, with the MLP model
demonstrating the best performance. It achieved an area under the receiver operating characteristic curve of 0.78 for breast
cancer (n=58), 0.76 for colorectal cancer (n=140), 0.84 for lung cancer (n=398), and 0.78 for prostate cancer (n=104),
outperforming other baseline models (P<.001). In addition to demographic risk factors, the most prominent nontraditional risk
factors overlapped across models and cancer types, including hyperlipidemia (odds ratio [OR] 1.14, 95% CI 1.11‐1.17; P<.01),
diabetes (OR 1.34, 95% CI 1.29‐1.39; P<.01), depressive disorders (OR 1.11, 95% CI 1.06‐1.16; P<.01), heart diseases (OR
1.42, 95% CI 1.32‐1.52; P<.01), and anemia (OR 1.22, 95% CI 1.14‐1.30; P<.01). The similarity analysis indicated the unique
risk factor pattern for lung cancer from other cancer types.
Conclusions: The study’s findings demonstrated the effectiveness of explainable ML models in assessing nontraditional
risk factors for major cancers and highlighted the importance of considering unique risk profiles for different cancer types.
Moreover, this research served as a hypothesis-generating foundation, providing preliminary results for future investigation
into cancer diagnosis risk analysis and management. Furthermore, expanding collaboration with clinical experts for external
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validation would be essential to refine model outputs, integrate findings into practice, and enhance their impact on patient care
and cancer prevention efforts.
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Introduction
Cancer is a life-threatening disease and leading cause of
death worldwide. In 2024, 611,000 people were estimated
to have died from cancer in the United States, and the
estimated new cancer cases will reach more than 2 million
for the first time [1]. This surge includes rising incidence
rates for major cancers, including breast, prostate, lung,
and colorectal cancers, which display the trend of increas-
ingly affecting younger individuals who have many more
years of life expectancy [1]. The US Preventive Services
Task Force modified the recommended age for colorectal
cancer screening from 50 to 45 years for people at average
risk in 2021 and adjusted the recommendation for breast
cancer screening for all women to start at the age of 40
years in 2024 [2,3]. Similar upward trends in the incidence
of early-onset cancers are observed in other high-income
countries, suggesting shared risk factors and exposures across
these regions. However, besides those uncontrollable risk
factors, such as previous cancer diagnosis, family history
of cancer, and genetics or inherited cancer syndrome, many
cancer risk factors, including lifestyle factors, are modifiable
and can be managed to decrease people’s risk for cancer [4].

Extensive evidence highlights the potential benefits of
early identification of individuals at high risk for cancer,
which can contribute to improved prevention, more effec-
tive treatment, reduced cancer burden, and better long-term
outcomes. However, demonstrating a clear survival advant-
age [5] from screening remains challenging, with notable
exceptions such as cervical cancer [6]. It is essential to
address biases like lead-time and length bias in screening,
as they can overestimate its benefits, ensuring accurate
evaluations [7]. In the context of breast cancer, it was
estimated that early access to treatment services follow-
ing breast cancer screening could have reduced breast
cancer mortality by 25%‐40% [8]. Given the tremendous
benefits of early identification of high-risk patients, an
increasing number of cancer risk prediction models have
been developed [9]. However, Traditional models used for
cancer risk prediction, such as logistic regression (LR) and
Cox regression, often demonstrate moderate discrimination
accuracy, with an area under the receiver operating charac-
teristic curve (AUC) ranging from 0.53 to 0.64 [10-13].
These models frequently emphasize family history and may
have limited generalizability, potentially introducing biases
when applied to specific subpopulations [14,15]. Further-
more, nontraditional risk factors, such as chronic diseases,
are often overlooked, despite evidence suggesting that chronic
conditions can elevate cancer risk similarly to lifestyle factors
[16]. This highlights the need for more advanced methods to

enhance cancer diagnosis risk prediction and support effective
cancer prevention strategies.

Machine learning has shown promising potential in cancer
prediction by leveraging electronic health record (EHR)
data to identify risk factors [17]. Current applications range
from developing predictive models for early cancer detec-
tion to personalized treatment recommendations and outcome
predictions, based on various patient characteristics and
biomarkers. Despite these advancements, several challenges
remain in cancer prediction using machine learning [18].
A key issue is the need for a deeper understanding of
risk factors within and across different cancer types [19].
As research progresses, explainable machine learning offers
a meaningful step forward in improving the efficacy and
transparency of predictive models [20-22]. These models not
only enhance predictive accuracy but also provide interpret-
able insights into how predictions are made, fostering trust
and facilitating clinical decision-making [23]. By systemati-
cally identifying and excluding irrelevant features, explaina-
ble approaches can reduce noise and streamline the prediction
process. However, it is important to recognize that feature
selection algorithms can be sensitive to dataset characteris-
tics, where small changes in the data may lead to differing
results [24]. This underscores the importance of carefully
selecting features that are most relevant, contributing to a
deeper understanding of cancer diagnosis risk factors and
improving predictive performance.

Hence, this study presented comprehensive research aimed
at uncovering the association between pivotal factors and the
risks of 4 major cancer diagnoses (breast, prostate, lung, and
colorectal) through the use of explainable machine learn-
ing techniques on penalized LR, random forest (RF), and
multilayer perceptron (MLP). Our primary objective was to
pinpoint the significant features that exert an influence on
the risks associated with the diagnosis of these major cancers
and to delineate the patterns of risk factors corresponding to
each cancer type. Such insights can contribute to enhanced
risk monitoring and patient stratification and provide valuable
support for clinicians in their decision-making processes,
ultimately improving the quality patient care. By elucidating
these critical factors and their associated risk factor patterns,
we provided clinicians valuable insights through rigorous
analysis for enhancing risk monitoring and patient care across
various cancer types.
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Methods
Experimental Dataset
Our study was conducted using data from Medical Informa-
tion Mart for Intensive Care (MIMIC)–III, a comprehensive,
structured, longitudinal EHR dataset that is publicly available
[25]. This dataset contains deidentified, detailed clinical
data from intensive care unit (ICU) admissions between
2001 and 2012 at Beth Israel Deaconess Medical Center
in Boston, Massachusetts, and is accessible to the global
research community under a data use agreement. We used
the most recent version (v2.0 released in January 2023) for
this work which contains a broad spectrum of data, including
information on individual patients’ health and health care
from various inpatient and outpatient visits, such as diag-
noses, prescriptions, lab tests, and procedures. These visits
include emergency room admissions and subsequent hospital
transfers, where a patient’s transfer to a ward or subsequent
re-admission to the ICU within the same hospitalization
period was considered a single visit. In total, this dataset
contains 58,976 admissions of 46,520 patients.

Additionally, we investigated the health status and
prevalence of a few common chronic diseases for the
MIMIC-III dataset, compared with the prevalence of these
chronic diseases in the US population. The MIMIC-III dataset
shows that hypertension affects 47.97% of ICU patients,
while in the US population, prevalence ranges from 46.9%
to 49.4% [26,27]. Diabetes mellitus is present in 21.20%
of MIMIC-III patients, whereas it affects 11.6% of the US
population and 14.7% of adults [28]. Hypercholesterolemia
appears in 14.94% of ICU cases, with US estimates between
10% and 11.4% [29,30]. Congestive heart failure is recorded
in 27.38% of MIMIC-III patients, while the lifetime risk in
the US is 24% [31]. Esophageal reflux affects 15.33% of
ICU patients and 20% of people in the US [32]. Pneumonia
is diagnosed in 12.46% of ICU patients, while 24.9% of
US adults have reported cases [33]. Anemia affects 14.02%
of ICU patients, while 5.6% of the US population has
the condition [34]. Acquired hypothyroidism is observed in
10.71% of MIMIC-III patients and 4.6% of US adults [35].

Tobacco use is recorded in 7.76% of ICU cases, while 19.8%
of US adults report smoking [36]. Depressive disorders affect
8.17% of ICU patients, while 9.5% of American adults have
been diagnosed [37]. Chronic airway obstruction is reported
in 10.24% of MIMIC-III cases, while national estimates range
from 6.0% to 6.1% [38].
Data Preprocessing
We included patients with 4 types of cancers (breast,
colorectal, lung, and prostate) identified using International
Classification of Diseases, Ninth Revision (ICD-9) codes
associated with the diagnosis of each type of cancer (Table
S1 in Multimedia Appendix 1).

We took a few steps to preprocess the experimental
dataset, starting with the consolidation of 3 main tables
from the MIMIC-III database. These included: (1) founda-
tional patient information, capturing demographics and initial
hospital admission data; (2) a reference table for ICD-9 codes,
detailing both codes and corresponding diagnostic labels; and
(3) logs of patient visit sequences with associated ICD-9
codes. This consolidation linked the records via patient IDs
to construct a detailed longitudinal dataset. Figure 1 illustrates
the data processing workflow of this study. Patients’ ages
were determined by deducting their date of birth from their
initial hospital admission date, with the result rounded to
the nearest year. Any patient records missing demographic
details (such as ethnicity, marital status, or religion) were
omitted, narrowing the dataset to a total of 21,372 unique
individuals. Our study focused on patients who had multiple
hospital visits prior to their cancer diagnosis presence in
the record to identify potential risk factors. After a cancer
diagnosis code was recognized, further visits were disregar-
ded. These records were combined with those of patients
without a cancer diagnosis. A label was created as 1 if a visit
included an ICD-9 code for a cancer diagnosis and 0 if not.
To ensure a balanced dataset in terms of cancer diagnosis,
the study matched patients diagnosed with cancer with those
without cancer using propensity score matching based on
demographic factors. Table 1 contains a detailed description
of patient characteristics for 4 cancer types.
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Figure 1. Medical Information Mart for Intensive Care (MIMIC)–III data processing pipeline. EHR: electronic health record; ICD-9: International
Classification of Diseases, Ninth Revision.

Table 1. Characteristics of patients for 4 types of cancer.
Breast cancer (n=58) Colorectal cancer (n=140) Lung cancer (n=398) Prostate cancer (n=104)
With cancer
(n=29)

Without
cancer (n=29)

With cancer
(n=70)

Without
cancer (n=70)

With cancer
(n=199)

Without
cancer
(n=199)

With cancer
(n=52)

Without
cancer (n=52)

Age (years), median
(range)

60 (40‐86) 60 (39‐86) 76 (21‐87) 75.5 (29-87) 69 (39‐88) 69 (39‐87) 74.5 (52-88) 73.5 (52-88)

Sex, n (%)                 
  Female 27 (93.1) 27 (93.1) 35 (50.0) 33 (47.1) 93 (46.7) 83 (41.7) 0 (0) 0 (0)
  Male 2 (6.9) 2 (6.9) 35 (50.0) 37 (52.9) 106 (53.3) 116 (58.3) 52 (100) 52 (100)
Race, n (%)                 
  White 20 (69.0) 21 (72.4) 51 (72.9) 52 (74.3) 162 (81.4) 157 (78.9) 41 (78.8) 39 (75.0)
  Non-White 9 (31.0) 8 (27.6) 19 (27.1) 18 (25.7) 37 (18.6) 42 (21.1) 11 (21.2) 13 (25.0)
Marital status, n (%)a                 
  Married 16 (55.2) 15 (51.7) 37 (52.9) 41 (58.6) 109 (54.8) 113 (56.8) 31 (59.6) 32 (61.5)
  Not married 13 (44.8) 14 (48.3) 33 (47.1) 29 (41.4) 90 (45.2) 86 (43.2) 21 (40.4) 20 (38.5)
Religion, n (%)                 
  Catholic 15 (51.7) 13 (44.8) 35 (50.0) 31 (44.3) 111 (55.8) 107 (53.8) 19 (36.5) 19 (36.5)
  Jewish 7 (24.1) 7 (24.1) 17 (24.3) 18 (25.7) 33 (16.6) 31 (15.6) 11 (21.2) 10 (19.2)
Protestant Quaker 7 (24.1) 7 (24.1) 14 (20.0) 11 (15.7) 42 (21.1) 38 (19.1) 16 (30.8) 17 (32.7)
  Other 0 (0) 3 (10.3) 4 (5.7) 10 (14.3) 13 (6.5) 23 (11.6) 6 (11.5) 6 (11.5)
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Breast cancer (n=58) Colorectal cancer (n=140) Lung cancer (n=398) Prostate cancer (n=104)
With cancer
(n=29)

Without
cancer (n=29)

With cancer
(n=70)

Without
cancer (n=70)

With cancer
(n=199)

Without
cancer
(n=199)

With cancer
(n=52)

Without
cancer (n=52)

ICUb visits, n                 
  Mean 2.5 1.5 2.6 1.5 2.6 1.6 2.5 1.5
  Maximum 5 5 6 6 10 12 7 5
  Minimum 2 1 2 1 2 1 2 1
ICD-9c codes for
each patient, n

                

  Mean 25 14 27 16 26 15 30 15
  Maximum 51 68 81 71 82 96 63 66
  Minimum 3 3 9 3 6 2 5 4

aCategories of marital status include “single”, “divorces”, “widowed”, and “separated”.
bICU: intensive care unit.
cICD-9: International Classification of Diseases, Ninth Revision.

Feature Selection
Our experiment’s initial dataset comprised thousands of
diagnosis codes intended for predicting cancer diagnosis
risk. Aware of some features’ potential redundancy and less
informative nature, we did a feature selection process. This
involved assessing the relevance and importance of each
feature in relation to 4 specific types of cancer. We performed
a correlation-based feature selection process to identify a
subset of features that were highly correlated with the target
cancer outcomes. This was followed by a thorough review
of relevant literature and consultation with experts to validate
and refine the selected features.
Framework
In this work, we applied 3 advanced models, penalized LR,
RF, and MLP, based on their demonstrated accuracy and
robustness in handling high-dimensional datasets. RF and
MLP excel at identifying complex, nonlinear interactions
among variables without requiring predefined interaction
terms. This capability is crucial for analyzing interactions
between risk factors and cancer outcomes. Our choice of RF
and MLP was determined by a desire to balance complex-
ity with interpretability, as well as to ensure computational
efficiency. Both methods are straightforward and offer high
interpretability, which makes them excellent foundational
models for exploring how different features influence cancer
diagnosis risk.

Since the task aimed at forecasting cancer diagnosis
risk by considering important and relevant risk factors,
we evaluated the efficacy of our methodologies by employ-
ing several critical performance metrics: AUC, accuracy,
specificity, sensitivity, and the F1-score for each model. We
partitioned the dataset into 3 sections for model development:
70% for training, 10% for validation, and 20% for testing.
The model that exhibited the best results on the validation set
was further subjected to an in-depth analysis of the test set,
using a 3-fold cross-validation technique to calculate its AUC
precisely. To enhance our understanding of how our machine
learning models contribute to cancer prevention, we also
quantified the impact of each feature on the prediction of 4

cancer types. We then ranked these features according to their
significance. All statistical analyses and model implementa-
tions were coded using Python, with the scikit-learn library
serving as the foundation for our predictive framework [39].
To assess the generalizability of the model, we validated its
performance using an independent ICU dataset from MIMIC-
IV-ED ((Medical Information Mart for Intensive Care), which
represents an extended patient population. For each cancer
type, we randomly sampled 200 cases and 200 matched
controls from MIMIC-IV-ED, ensuring no patient overlap
with the MIMIC-III experimental dataset.

To investigate the similarity of features ranking by
different cancer types, we applied rank biased overlap (RBO)
[40], a similarity measure of 2 ranked lists. The RBO score
ranges between 0 and 1, where a higher score indicates
greater similarity between the lists. A score of 1 implies
perfect overlap, meaning the 2 lists are identical in both order
and content. On the other hand, a score of 0 suggests no
overlap between the lists.

Mathematically, let xi be the high-dimensional feature
input. Let yi ∈ 0, 1  be the corresponding label. yi = 0
means not affected, and yi = 1 means affected. Our goal
is to learn a predictive function f that best classifies the
data. We built 3 state-of-the-art models for 4 cancer types
respectively in this study:

• Penalized LR: given M training instan-
ces, we considered L1 regularized LR
by minimizing the following function:

i = 1
M − loglogp x i ; θ + β | |θ | |1.

• RF [41]: a robust ensemble learning method that
constructs multiple decision trees during training to
improve prediction accuracy and prevent overfitting,
where f is the decision tree as base learners. The RF
model was trained by iteratively selecting features from
root to leaf nodes and aggregating multiple trees with
the weights from a subset of the training instances.
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The nodes and the weights in the model reflect their
importance to the final prediction.

• MLP [42]: a type of artificial neural network that
consists of at least 3 layers of nodes: an input layer,
one or more hidden layers, and an output layer. Each
node, or artificial neuron, in one layer, connects with
a certain weight to every node in the following layer,
and nodes do not connect within the same layer. The
nonlinear activation functions, such as the sigmoid, or
Rectified Linear Unit, are applied to the weighted sum
of inputs to a neuron, determining its output signal.

To rank the impact on predictive models of the features,
relative to all 3 models, we used a permutation importance
score to rank all features in the training models for MLP [43].
The scores were defined by the mean decrease in accuracy of
the trained model when each feature was permuted.
Ethical Considerations
MIMIC-III data are the result of a collaboration between Beth
Israel Deaconess Medical Center (BIDMC) and Massachu-
setts Institute of Technology. Data collected at BIDMC as
part of routine clinical care are deidentified, transformed, and
made available to researchers who have completed training
in human research and signed a data use agreement. The

Institutional Review Board (HUM00230096) at the BIDMC
granted a waiver of informed consent and approved the
sharing of the research resource. This study was determined
to be exempt from further ethical review. The contributing
author, XH, obtained the necessary authorization to access
the anonymized dataset and oversaw the meticulous data
extraction process.

Results
Feature Selection
We conducted a feature selection process to refine thou-
sands of diagnosis codes for predicting cancer diagnosis
risk, using correlation-based selection to identify the most
relevant features for 4 cancer types. Through this rigorous
analysis, we aimed to distill the dataset down to a more
manageable and meaningful subset of features. Eventually,
we identified 33 features (recategorized into 20 factors
for further analysis, Table 2) that emerged as particularly
crucial for accurately predicting cancer diagnosis risk. These
features were meticulously curated, ensuring that only the
most informative and pertinent variables were retained for our
predictive models.

Table 2. Features selected for predicting cancer diagnosis risks.
Features Factors
Acidosis Acidosis
Acute kidney failure, unspecified Acute kidney failure
Age Age
Anemia, unspecified Anemia
Acute posthemorrhagic anemia Anemia
Depressive disorder, not elsewhere classified Depressive disorder
Diabetes mellitus without mention of complication, type II or unspecified type, not stated as uncontrolled Diabetes
Esophageal reflux Esophageal reflux
Ethnicity Ethnicity
Gender Gender
Cardiac complications, not elsewhere classified Heart disease
Aortocoronary bypass status Heart disease
Coronary atherosclerosis of native coronary artery Heart disease
Old myocardial infarction Heart disease
Congestive heart failure, unspecified Heart disease
Atrial fibrillation Heart disease
Subendocardial infarction, initial episode of care Heart disease
Pure hypercholesterolemia Hyperlipidemia
Other and unspecified hyperlipidemia Hyperlipidemia
Unspecified essential hypertension Hypertension
Other iatrogenic hypotension Hypotension
Unspecified acquired hypothyroidism Hypothyroidism
Marital status Marital status
Religion Religion
Acute respiratory failure Respiratory or pulmonary diseases
Unspecified pleural effusion Respiratory or pulmonary diseases
Pneumonia, organism unspecified Respiratory or pulmonary diseases
Pneumonitis due to inhalation of food or vomitus Respiratory or pulmonary diseases
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Features Factors
Pulmonary collapse Respiratory or pulmonary diseases
Chronic airway obstruction, not elsewhere classified Respiratory or pulmonary diseases
Unspecified septicemia Sepsis
Personal history of tobacco use Tobacco use
Urinary tract infection, site not specified Urinary tract infection (UTI)

Model Performance
For each predicted cancer outcome, we carried out the
experiment by predicting cancer using the entire diagnosis
history of the patient by building LR, RF, and MLP mod-
els. Table 3 illustrates the accuracy, specificity, sensitivity,
and F1-score of these 3 models for breast, colorectal, lung,
and prostate cancers. Figure 2 shows the receiver operat-
ing characteristic plots of 3 models for 4 types of cancer,
respectively. Both Table 3 and Figure 2 show that within the
3 models, MLP performs the best, RF falls in the middle, and
LR ranks last. It is worth noting that MLP achieved an AUC

of 0.78 for breast cancer, 0.76 for colorectal cancer, 0.84 for
lung cancer, and 0.78 for prostate cancer, demonstrating a
higher AUC over traditional risk factor-based models and a
statistically significant superiority over random chance. The
underwhelming results from the LR model led us to investi-
gate the complexity of risk factors for prediction. Compared
with LR, MLP reveals the intricate, nonlinear associations
between risk factors and the likelihood of cancer, offering
meaningful insights into the collective influence of these risk
factors on cancer diagnosis risk.

Table 3. Comparison of model performance across 4 types of cancer on Medical Information Mart for Intensive Care (MIMIC)–III.
Breast cancer Colorectal cancer Lung cancer Prostate cancer
LRa RFb MLPc LR RF MLP LR RF MLP LR RF MLP

Accuracy 0.56 0.73 0.78 0.60 0.70 0.76 0.74 0.80 0.83 0.59 0.72 0.78
Specificity 0.45 0.70 0.80 0.67 0.61 0.81 0.61 0.92 0.87 0.53 0.80 0.84
Sensitivity 0.71 0.75 0.75 0.54 0.80 0.73 0.85 0.68 0.80 0.65 0.65 0.72
F1-score 0.56 0.75 0.75 0.60 0.70 0.79 0.78 0.78 0.84 0.63 0.71 0.76

aLR: logistic regression.
bRF: random forest.
cMLP: multilayer perceptron.
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Figure 2. Area under the receiver operating characteristic curve (AUC) performance of the 3 binary classification models (logistic regression [LR],
random forest [RF], and multilayer perceptron [MLP]). The figure shows AUC curves of breast cancer, colorectal cancer, lung cancer, and prostate
cancer for LR, RF, and MLP, respectively.

Additionally, Table S2 in Multimedia Appendix 1 presents
the AUC, accuracy, specificity, sensitivity, and F1-score for
the 3 models across breast, colorectal, lung, and prostate
cancers. Among the models evaluated, MLP demonstrated the
highest performance, achieving an AUC of 0.88 for breast
cancer, 0.83 for colorectal cancer, 0.90 for lung cancer, and
0.85 for prostate cancer.
Feature Importance Analysis
We analyzed the feature importance for each cancer type
further to investigate the potential impact of risk factors
on cancer. Tables 4 and 5 present the feature importance
analysis of RF and MLP, showcasing the top-ranked risk
factors for each type of cancer. The ranks of these factors
were relatively different by model and cancer type, although
some consistency can be observed across cancer types. Age
emerged as the top risk factor across all 4 types of cancer;
race/ethnicity ranked among the top 10 factors for all cancers
from all models except for the RF-based lung cancer and
prostate cancer models; gender was ranked among the top
10 in MLP-based models but not in any RF-based models;
marital status and religion were presented for some types
of cancer in some of the models; and tobacco use as an
important factor for patients with lung and prostate cancer
exclusively. However, all these demographic risk factors were
included in the top 20 factors for all cancer types (Table

S3 in Multimedia Appendix 1). Similarly, RF-based models
identified hypertension, heart diseases, respiratory/pulmonary
diseases, and acute kidney failure as the common top risk
factors for all types of cancers, while MLP-based models
highlighted hyperlipidemia, diabetes, depressive disorder, and
heart diseases. We calculated the odds ratio (OR) for each
highlighted feature to assess its association with overall
cancer diagnosis risk across 4 cancer types. The results
indicated that hyperlipidemia had an OR of 1.14 (95%
CI 1.11‐1.17; P<.001), while diabetes showed a stronger
association with an OR of 1.34 (95% CI 1.29‐1.39; P<.01).
Similarly, depressive disorders were linked to an OR of 1.11
(95% CI 1.06‐1.16 P<.01), and heart diseases exhibited the
highest association with an OR of 1.42 (95% CI 1.32‐1.52;
P<.01). Last, anemia was also significantly associated with
cancer diagnosis risk, with an OR of 1.22 (95% CI 1.14‐
1.30; P<.01). These findings suggest a statistically signifi-
cant relationship between these conditions and an increased
risk of developing these 4 types of cancer. In MLP-based
models, respiratory/pulmonary diseases and acute kidney
failure were only presented as the top 10 for lung cancer.
Both RF and MLP-based models pinpointed anemia as the
top risk for breast cancer. Figure 3 shows the RBO similar-
ity scores of risk factors for 4 types of cancer according
to MLP-based models. Low similarity scores are presented
between lung cancer and any other 3 cancer types, all around
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0.58, suggesting distinct patterns of risk factors associated
with lung cancer. Risk factors for breast and prostate cancers
show the most similar ranking with an RBO similarity score

of 0.76. A moderate similarity score between colorectal
and breast cancers is about the same as the score between
colorectal and prostate cancer, both around 0.70.

Table 4. Top-10 ranked features generated across 4 different cancer types in random forest.
Ranking Breast cancer Colorectal cancer Lung cancer Prostate cancer
1 Age Age Age Age
2 Hypertension Respiratory or pulmonary diseasesa Hypertension Hypertension
3 Religion Hypertension Religion Religion
4 Marital status Acute kidney failure Hyperlipidemia Heart diseasesc

5 Respiratory or pulmonary diseases Diabetes Heart diseases Marital status
6 Heart diseases Heart diseases Acute kidney failure UTIc
7 Race or ethnicity Hyperlipidemia UTI Respiratory or pulmonary diseases
8 Depressive disorders Race or ethnicity Respiratory or pulmonary diseases Anemia
9 Acute kidney failure Religion Marital status Hyperthyroidism
10 Anemia Acidosis Anemia Diabetes

aRespiratory or pulmonary diseases include pneumonia, acute respiratory failure, chronic airway obstruction, and other respiratory or pulmonary
complications.
bHeart diseases include atrial fibrillation, myocardial infarction, congestive heart failure, coronary atherosclerosis, and other cardiac complications.
cUTI: urinary tract infection.

Table 5. Top-10 ranked features generated across 4 different cancer types in multilayer perceptron.
Ranking Breast cancer Colorectal cancer Lung cancer Prostate cancer
1 Age Age Tobacco use Age
2 Gender Diabetes Age Gender
3 Hyperlipidemia Anemia Respiratory or pulmonary diseasesa Race or ethnicity
4 Heart diseasesb Acidosis Gender Tobacco use
5 Race or ethnicity Hyperlipidemia Race or ethnicity Diabetes
6 Marital status Sepsis Diabetes Hyperlipidemia
7 Depressive disorder Gender Hyperlipidemia Heart diseases
8 Religion Race or ethnicity Hypertension Marital status
9 Anemia Marital status Heart diseases Religion
10 Hypothyroidism Depressive disorder Acute kidney failure Depressive disorder

aRespiratory or pulmonary diseases include pneumonia, acute respiratory failure, chronic airway obstruction, and other respiratory or pulmonary
complications.
bHeart diseases include atrial fibrillation, myocardial infarction, congestive heart failure, coronary atherosclerosis, and other cardiac complications.
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Figure 3. Rank biased overlap similarity score of risk factors for 4 cancer types. A high value represents high similarity, and a low value represents
low similarity of risk factor ranks between 2 cancer types.

Discussion
Principal Findings
This study used comprehensive patient diagnosis histories
to evaluate the association between key risk factors and
cancer outcomes and identify risk factor patterns across
different cancer types using penalized LR, RF, and MLP
models. The analysis identified the top-ranking risk factors,
including nontraditional risk factors such as the diagnosis of
hyperlipidemia, diabetes, depressive disorders, heart diseases,
and anemia, in addition to demographic factors such as
age, sex, race/ethnicity, for the most prevalent 4 types
of cancer, including breast, colorectal, lung, and prostate
cancers. The model performance evaluation revealed the
valuable potential of neural network-based models, especially
MLPs, in oncology for predicting cancer diagnosis risks
across cancer types. MLPs exhibit a strong capability to
model complex, nonlinear interactions among diverse risk
factors, making them potentially valuable tools for identify-
ing patterns in cancer diagnosis risk and informing early
detection strategies. However, their application in clinical
interventions should be guided by a solid scientific rationale
and supported by pathological models that explain the role
of these risk factors in disease development. Additionally,
validation across different cohorts and, ideally, prospective
studies are necessary to ensure their reliability and clini-
cal utility. This advantage is particularly important given
the model’s capacity to integrate and interpret the intricate
relationships between clinical factors present in EHRs. In
contrast to simpler models like LR, which struggle with the
multidimensional nature of risk factors on cancer diagnosis in

many cases, MLPs offer a more detailed and comprehensive
analysis, enhancing our understanding of how these factors
collectively impact cancer diagnosis risk and improving the
precision of preventive strategies in clinical settings. Last,
this study does not aim to establish causal inference but
rather to examine significant overlapping risk factors that
may contribute to cancer diagnosis risk, particularly those
observed in patients with other medical conditions. While
these diagnoses are not independent causal determinants of
cancer, their presence may be associated with an increased
risk. Careful consideration of these associations is essential
for a comprehensive understanding of cancer risk factors and
their potential interactions.
Comparison to Prior Work
Prior cancer risk prediction models usually focus on lifestyle
factors like smoking, diet, alcohol consumption, physical
activity, and sun exposure as key variables [44-46]. Some
models have also incorporated genetic risk factors [47,48].
However, many of these models reported less optimal
performance, such as a high specificity but low sensitivity
[46] or a low AUC of around 0.65 [48]. Chronic diseases are
often overlooked as risk factors for cancer, and they are not
often targeted in cancer prevention strategies. The associa-
tion between some of these diseases and cancers may partly
be due to shared risk factors, such as aging, obesity, diet,
and physical inactivity. However, they can also be independ-
ent risk factors for cancer. For example, diabetes mellitus
has been identified as an independent risk factor for colon
and rectal cancer in a meta-analysis of studies that either
controlled for smoking and obesity, or smoking, obesity,
and physical exercise [49]. As nontraditional risk factors,
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the influence of certain chronic conditions on cancer has
been brought to researchers’ attention in the past decade. A
prospective cohort study with 405,878 participants followed
for an average of 8.7 years demonstrated that 8 common
chronic diseases accounted for more than 20% of cancer risk,
which are comparable to 5 major lifestyle factors, such as
smoking and lack of physical activity [16]. These 8 chronic
diseases or markers included blood pressure, total cholesterol,
heart rate, diabetes, proteinuria, glomerular filtration rate,
pulmonary disease, and gouty arthritis marker [16]. How-
ever, as these diseases or markers were pre-selected by the
researchers based on their disease burden worldwide, some
other essential influential conditions might be missed. Our
models confirmed most of these 8 diseases as the top-rank-
ing risk factors. Additionally, some new conditions were
revealed in our models among the top 10 factors for 4 types of
cancer, such as depressive disorder, anemia, hypothyroidism,
sepsis, urinary tract infection, and acidosis, which encourages
further exploration. Certainly, some of these diagnoses may
be directly related to the cancer itself. For example, anemia
is a common symptom of metastatic breast cancer and a
side effect of chemotherapy [50]. In addition, sepsis and
colorectal cancer have demonstrated a complex relationship
and may have shared pathophysiological traits and potential
bacterial associations reported by the literature [51]. Notably,
tobacco use and respiratory/pulmonary diseases emerged as
pivotal risk factors, specifically for lung cancer, which is
not surprising based on our knowledge in the field. Diabe-
tes and anemia were highlighted as significant risk factors
for colorectal cancer, which is congruent with the literature
[52,53]. Iron deficiency has been recognized long-term as
an independent predictor of colorectal cancer, which may
be due to chronic blood loss from the gastrointestinal tract
and the inflammation associated with malignancy [54,55].
These conditions could have shared risk factors with cancer.
However, emerging evidence implies that they may have
more complicated relationships, including shared pathophy-
siological mechanisms that need further exploration [56].
Moreover, cancer prevention strategies should consider the
impact of comorbid conditions on the incidence of cancer and
particularly their joint impact on cancer risks [53].

Understanding the relationships between various risk
factors and cancer diagnosis risk is pivotal for the early
detection and prevention of cancer. In this context, our feature
importance analysis using RF and MLP models pinpointed
critical risk factors for different cancer types and explored
patterns of these risk factors across various cancers. Although
the ranks of risk factors for cancers were slightly different
by the RF and MLP-based models, similar patterns were
presented among the top 10 factors (Tables 4 and 5), which
are interpretable and supported by the literature. Both models
highlighted age as the predominant risk factor across all
4 types of cancer, which is evident that as age increases,
the incidence rates for cancer overall climb steadily, and
alongside age, demographic variables such as gender, race/
ethnicity, marital status, and religion emerged within the top
10 features [57]. Racial/ethnic disparities in cancer incidence
and outcomes are well-known. Employing culturally tailored
community awareness and education programs may increase

cancer screening to improve early-stage diagnoses and
modify risk behaviors for cancer prevention [58]. Although
there may not be existing evidence to confirm that mari-
tal status is an independent risk factor for cancer, observa-
tional studies demonstrate that married status is associated
with reduced risk of cancer-specific and all-cause mortality
[59,60]. Religion and spirituality are important in patient
cancer care, and specifically, a systematic review suggests a
positive association between religious attendance and cancer
screening use [61]. Our models not only confirmed the
significance of these risk factors for each cancer type but
also our RF-based model facilitated an interpretable analysis,
allowing us to clearly rank the significance of each risk
factor, while the MLP-based model provided deeper insights
into complex, nonlinear interactions among the risk factors.
This approach enriches our understanding of how specific risk
factors influence cancer diagnosis, enhancing the potential
for developing tailored intervention strategies that address the
unique risk profiles associated with different cancer types and
potentially shared risk patterns across prevalent cancer types.

The analysis of the similarity among risk factors for
the diagnosis of 4 types of cancer also revealed interesting
findings. As breast and prostate cancer are both hormone-
dependent cancers, it is understandable that their importance-
ranked risk factors share a high level of similarity. However,
lung cancer had more unique ranked risk factors than other
types of cancer, which may be because lung cancer is more
sensitive to environmental risk factor exposure. The findings
from our analysis underscore the shared risk factors and
heterogeneous nature of cancer and highlight the importance
of considering unique risk profiles for different cancer types.
This also urges us to address the fundamental mechanism
of risk factors leading to cancers. Such insights are cru-
cial for developing tailored prevention strategies, optimizing
screening protocols, and informing personalized treatment
approaches to mitigate the burden of lung cancer and improve
patient outcomes.
Limitations
First, the use of the MIMIC-III dataset in this study on
explainable machine learning for cancer risk prediction
presents certain limitations that may impact the generaliz-
ability of the findings, Since the data are derived from
ICU patient records, it primarily represents individuals with
severe conditions, and the available ICD codes may not fully
capture disease complexity, potentially leading to incomplete
representations of patient conditions. Additionally, the limited
sample size for patients with cancer may impact predic-
tive performance and increase the risk of overfitting. Both
limitations may affect the generalizability of the findings. To
enhance the robustness of future research, integrating more
recent and varied data sources and validating findings across
different cohorts are essential steps. Second, one limitation
comes from the application of explainable machine learn-
ing models for cancer risk prediction. Employing advanced
techniques like penalized LR, RF, and MLP, this research
seeks to optimize predictive accuracy. However, each model
inherently embodies trade-offs: while more complex models,
such as multi-layer perceptron, may enhance performance,
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they often compromise on interpretability. This presents
significant challenges in clinical settings, where understand-
ing the reasoning behind model predictions is crucial for
acceptance and trust by medical practitioners. Third, another
limitation of this study arises from the inherent nature of
machine learning models, which are primarily designed to
detect correlations in data and associations between features
and the outcome rather than establish causal relationships.
These models rely on the quality and comprehensiveness of
the input data, and while they can reveal significant associa-
tive patterns, they do not focus on differentiating whether
the associations observed are causal. Meanwhile, given the
limited availability of patient lifestyle and socioeconomic
information, additional factors related to social determinants
of health, such as socioeconomic status, employment, and
family size, can be considered as potential confounders within
the model for future improvement. To address all the above,

future work should integrate causal inference frameworks to
validate the relationships suggested by the machine learning
predictions and provide insights into underlying mechanisms.
Conclusions
In conclusion, our study established a predictive framework
using EHR data to assess the association between risk
factors and cancer outcomes using explainable ML models
across major cancer types. We reported critical nontradi-
tional chronic condition risk factors in addition to common
demographic risk factors and outlined distinct patterns for
each of the 4 cancer types studied. Additionally, we explored
the similarities and differences in risk factor patterns across
these cancers. These insights contribute to a better under-
standing of cancer risk profiles and benefit in improving
cancer diagnosis and risk monitoring, offering supportive
guidance for clinical decision-making.
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