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Abstract
Background: Breast cancer screening plays a pivotal role in early detection and subsequent effective management of the
disease, impacting patient outcomes and survival rates.
Objective: This study aims to assess breast cancer screening rates nationwide in the United States and investigate the impact
of social determinants of health on these screening rates.
Methods: Data on mammography screening at the census tract level for 2018 and 2020 were collected from the Behavioral
Risk Factor Surveillance System. We developed a large-scale dataset of social determinants of health, comprising 13 variables
for 72,337 census tracts. Spatial analysis employing Getis-Ord Gi statistics was used to identify clusters of high and low breast
cancer screening rates. To evaluate the influence of these social determinants, we implemented a random forest model, with
the aim of comparing its performance to linear regression and support vector machine models. The models were evaluated
using R2 and root mean squared error metrics. Shapley Additive Explanations values were subsequently used to assess the
significance of variables and direction of their influence.
Results: Geospatial analysis revealed elevated screening rates in the eastern and northern United States, while central and
midwestern regions exhibited lower rates. The random forest model demonstrated superior performance, with an R2=64.53
and root mean squared error of 2.06, compared to linear regression and support vector machine models. Shapley Additive
Explanations values indicated that the percentage of the Black population, the number of mammography facilities within a
10-mile radius, and the percentage of the population with at least a bachelor’s degree were the most influential variables, all
positively associated with mammography screening rates.
Conclusions: These findings underscore the significance of social determinants and the accessibility of mammography
services in explaining the variability of breast cancer screening rates in the United States, emphasizing the need for targeted
policy interventions in areas with relatively lower screening rates.
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Introduction
In the United States, breast cancer ranks as the second
most prevalent form of cancer among women, surpassed
only by skin cancer [1]. Annually, approximately 240,000
cases of breast cancer are diagnosed in women, and tragi-
cally, approximately 42,000 women succumb to this disease
each year in the United States. This makes breast cancer
the second leading cause of cancer-related mortality among
women in the country, following lung cancer [2]. Screen-
ing for breast cancer serves as a crucial secondary preven-
tion measure, aimed at identifying the disease at an early
stage, prior to clinical manifestation. Early detection of
breast cancer enables the implementation of less intensive
treatment strategies, contributing to improved survival rates.
Mammography-based screening detects lesions before they
achieved clinical visibility [3]. Evidence shows that high-
quality routine screening programs have led to a 25% to 31%
reduction in breast cancer–related mortality among women
aged 50 to 69 years [4].

The US Preventive Services Task Force recommends
mammography every two years for women aged 40 to 74
years [5]. Despite these recommendations, current research
indicates disparities in mammography screening across
different parameters, including variations among women
residing in different regions and belonging to different races,
with varying levels of median household incomes, health
insurance statuses, and access to mammography services [6].
The 2022 Cancer Trends Progress Report revealed that 76%
of women aged 50‐74 years underwent mammogram testing,
with rates varying from 74% among Hispanic women to 82%
among non-Hispanic Black women [7]. Additionally, 64%
of women with less than a high school education, 67.5%
of women with incomes below 200% of the federal poverty
level, and 75% of those who were Medicare beneficiaries
underwent a mammogram test [7]. The Healthy People 2030
[8] has set a target to increase the proportion of breast cancer
screenings to 80% [9].

Geospatial and machine learning models have proven
effective in identifying the impact of social, natural, and built
environments on health outcomes [10-12]. This study seeks to
explain the geographical disparities in breast cancer screen-
ing across the United States and to explore the area-level
socioeconomic factors associated with the rates of breast
cancer screening. By examining these disparities, we seek
to provide insights that can guide targeted interventions and
policies aimed at improving equitable access to breast cancer
screening services.

Methods
This cross-sectional study investigates the spatial and
socioeconomic factors influencing mammography screening

rates among women aged 50 to 74 years in the United
States. The methodology section outlines the steps, including
data collection, variable selection, descriptive analysis, spatial
analysis, machine learning model implementation, and model
performance evaluation.
Data Collection

Dependent Variables
The data for mammography screening rates in this study
were sourced from the Centers for Disease Control and
Prevention’s (CDC) PLACES Project for the years 2018 and
2020, which used responses collected through the Behavio-
ral Risk Factors Surveillance System (BRFSS) survey [13].
This survey specifically targeted female respondents aged
50-74 years, categorizing them as women who reported
having undergone mammogram screenings and those who did
not (excluding unknowns and refusals). Our data extraction
process comprised two main stages. First, we extracted
age-adjusted mammography screening rates at the county
level for spatial analysis, facilitating the visualization of
patterns across the entire country. Second, we obtained the
crude rates (raw percentages) of mammography screening at
the census tract level, a small geographic unit used by the US
Census Bureau for collecting and analyzing statistical data,
explanatory analysis, and prediction model development by
machine learning methods.

Independent Variables
Based on a preliminary literature review, we selected
independent variables for the study from various sources.
We incorporated socioeconomic data from the CDC, the
2013‐2017 American Community Survey, the United States
Department of Agriculture, and the Health Resources and
Services Administration. The analyzed variables encompass
a range of factors, including urban-rural location, popula-
tion density, the rate of older women (aged 55 to 74
years), poverty rate, ethnicity (Black and Hispanic), educa-
tional attainment, uninsured rate, median home value, social
vulnerability index, and primary care shortage area.

To assess accessibility, we used data from the US Food
and Drug Administration’s Mammography Facility Database,
which included geocoding the locations of 8706 mammogra-
phy centers. The geodesic distance from each census tract
to the nearest facility and the number of facilities within a
10-mile radius were calculated. Table 1 provides a compre-
hensive overview of the dependent and independent variables
used in this study, including their names, sources, and
definitions.
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Table 1. Dependent and independent variables used in this study.
Variable name Source Unit Definition
Dependent variables
  Mammography rate (2018) CDCa Percent Crude percent of mammography use among women aged

50‐74 years in 2018
  Mammography rate (2020) CDC Percent Crude percent of mammography use among women aged

50‐74 years in 2020
Independent variables
  Urban-rural location USDAb Binary Urban or rural tract as of 2019
  Population density 2013‐2017 ACSc Per square

mile
Number of people per square mile

  Number of women aged ≥55 years 2013‐2017 ACS Percent Estimated percent of the female population aged 55 or
above

  Poverty rate Census ACS data Percent Estimated percent of all people that are living in poverty
  Without health insurance 2013‐2017 ACS Percent Estimated percent of the population without health

insurance coverage
  Higher education rate 2013‐2017 ACS Percent Estimated percent of the population ≥25 years, with a

bachelor’s, graduate, or professional degree
  Black population 2013‐2017 ACS Percent Percent of the population that is Black or African

American, by single census classification
  Hispanic population 2013‐2017 ACS Percent Percent of the population identified as Hispanic or Latino
  Home value 2013‐2017 ACS Dollar Estimated median value of an owner-occupied housing

unit
  Social vulnerability index CDC Index Social vulnerability level as of 2020
  Primary care shortage HRSAd Binary Primary care health professional shortage area status as

of 2020
  Distance to nearest mammography facility Calculated Mile Distance from the center of the census tract to the nearest

accredited mammography facility
  Number of mammography facilities Calculated Number Number of mammography facilities within the 10-mile

catchment of the census tract
aCDC: Center for Disease Control and Prevention.
bUSDA: United States Department of Agriculture.
cACS: American Community Survey.
dHRSA: Health Resources and Services Administration.

Analysis

Preprocessing
The primary objective of preprocessing was to handle missing
values of both dependent and independent variables within
the dataset. Due to the complexity of accounting for both
spatial and temporal correlations in imputing breast cancer
screening rates, we opted to exclude any census tracts that
lacked mammography screening data in the BRFSS dataset
for the years 2018 and 2020. Missing independent variables
were imputed using the mean values for numerical data and
the mode for binary data from the 20 closest neighboring
records.

Thematic Mapping and Spatial Clustering
The age-adjusted rates for breast cancer screening were
integrated into a shapefile of ArcGIS containing 3143
counties across all 50 states and the District of Columbia.
Subsequently, the data was visualized using the natural break
method [14] to enhance clarity. Using the Getis-Ord Gi
statistic [15], we identified hotspots indicating areas with
either high or low mammography screening rates. This spatial

analysis allowed us to discern localized patterns and trends of
breast cancer screening behavior.

Machine Learning Analysis
While constructing the predictive model, the response
variable was the mean value of mammography screening rates
in 2018 and 2020 for each census tract. The dataset was
randomly split into two parts: 75% was used for training the
model, and the remaining 25% was reserved for testing. This
division allowed us to develop the model using the training
data and then assess its predictive performance on the unseen
testing data.

In this study, an ensemble learning algorithm known as
random forest (RF) was employed to model the relationship
between geospatial factors and breast cancer screening rates.
Ensemble learning combines multiple models to improve
the overall prediction accuracy and robustness, which is the
rationale for choosing RF [16].

To enhance the efficacy of the RF model, we conduc-
ted a systematic hyperparameter search, where a predefined
grid of values for the number of trees and the number of
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variables sampled at each split were explored to identify the
optimal configuration [17]. We defined a grid of values for
the number of trees and the number of variables sampled at
each split.

We utilized the 5-fold cross-validation to evaluate the
RF model’s performance across different combinations of
hyperparameters. In a 5-fold cross-validation, the dataset is
split into 5 subsets, with each subset serving as the validation
set once, while the other 4 subsets are used for training.
This process helps in assessing the model’s generalization
ability. The model’s performance was fine-tuned by selecting
the combination of hyperparameters that minimized the root
mean squared error (RMSE), a metric indicating the average
difference between observed and predicted values. The
RMSE is critical as it directly relates to the model’s predic-
tion accuracy, with lower values indicating better perform-
ance [18].

To benchmark the performance of the RF model, we
also implemented the linear regression (LR) and support
vector machine (SVM) models. The LR provides a straight-
forward baseline, while SVM is known for its effectiveness
in high-dimensional spaces. The inclusion of these three
algorithms was motivated by their complementary strengths
in handling different data characteristics, allowing for a
comprehensive comparison of predictive accuracy.

The models were implemented using the Scikit-learn
package in Python, a widely used library for machine learning
that provides efficient tools for model training, evaluation,
and hyperparameter optimization [19].

Following the training process, predictions of breast cancer
screening rates were made on a separate testing set. Model
accuracy was evaluated using metrics such as R² and RMSE.
R² represents the proportion of variance in the dependent
variable explained by the model, serving as an indicator of
goodness-of-fit. RMSE, as previously mentioned, measures

the average difference between predicted and observed
values, providing insight into the model’s prediction error
[18].

To interpret the model’s predictions, we calculated
Shapley Additive Explanations (SHAP) values for each
feature. SHAP values provide a detailed understanding of
how each feature contributes to the model’s predictions [20].
By examining the mean SHAP values, the most influential
variables in predicting breast cancer screening rates were
identified. For variables with average SHAP values exceeding
0.3, scatterplots were created to explore the direction and
magnitude of their effects on screening rates [21].

Ethical Considerations
The Institutional Review Board at the University of
Tennessee Health Science Center determined that this
study (24‐10240-NHSR) qualifies for Not Human Subjects
Research status as it does not involve human subjects as
defined by 45 CFR 46.102. The data used in this study
were obtained from the publicly available BRFSS dataset
provided by the CDC. All study data were aggregated at
the census tract level, and no individual-level data were
accessed or analyzed, ensuring participant anonymity and
compliance with ethical standards.

Results
Summary Statistics About Data
Of the 72,337 census tracts nationwide, 49,118 were eligible
for inclusion in our analysis, as they had available mammog-
raphy screening data. The mean mammography screening
rate within these census tracts was 77% (SD 3.62) in 2018
and 76.51% (SD 3.71) in 2020. Table 2 provides a detailed
overview of summary statistics for all variables considered in
our analysis, encompassing the 49,118 included census tracts.

Table 2. Summary statistics for all dependent and independent variables for 49,118 census tracts included in the analysis.
Variables Missing values, n Census tracts (N=49,118)
Mammography rate (2018) (%), mean (SD) 0 77 (3.6)
Mammography rate (2020) (%), mean (SD) 0 76.5 (3.7)
Location n (%)
  Rural 0 12,284 (25)
  Urban 0 36,834 (75)
Population density (per square mile), mean (SD) 0 5,547.38 (13,334.53)
Women aged ≥55 years (%), mean (SD) 0 7.9 (4.0)
Poverty rate (%), mean (SD) 49 16.3 (12.5)
Without health insurance (%), mean (SD) 35 11.47 (7.83)
Higher education rate (%), mean (SD) 4 28.4 (18.6)
Black population (%), mean (SD) 1 15.2 (23.6)
Hispanic population (%), mean (SD) 1 12.7 (18.5)
Home value (US $), mean (SD) 727 203,834 (170,438)
Social vulnerability index, mean (SD) 82 0.59 (0.28)
Primary care shortage, n (%)
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Variables Missing values, n Census tracts (N=49,118)
  Yes 0 28,031 (57.1)
  No 0 21,087 (42.9)
Distance to nearest mammography (miles), mean (SD) 0 1.8 (3.2)
Number of mammography facilities, mean (SD) 0 18.1 (28.6)

Thematic Mapping and Spatial Clustering
Figures 1A and B illustrate the distribution of breast
cancer screening rates across the 3143 US counties for the
years 2018 and 2020, respectively. Regions in the eastern
and northern parts of the country exhibited higher rates
of breast cancer screening (>71%), while counties in the
central, midwestern, and southern areas displayed compara-
tively lower rates (<63%). While these visual representations
provide valuable insights, further confidence in the findings is
derived from statistical and spatial analyses.

Figures 1C and D present the outcomes of Getis-Ord Gi
statistics for the clustering of breast cancer screening rates
across the United States in 2018 and 2020, respectively.
The red areas (hotspots) on these maps represent spatial

clusters characterized by high mammography rates, indicat-
ing that the screening rates and their neighboring values
significantly surpass those in other regions. Conversely,
the blue areas denote coldspots, representing spatial clus-
ters with lower screening rates. The similarity in patterns
between the two time points underscores the reliability of the
observations and strengthens the robustness of the identified
spatial clusters. The map also reveals certain disparities.
For instance, counties along the western borders, such as
California, experienced a decline in mammography rates
from 2018 to 2020. Similarly, regions in Indiana, Texas,
and Arkansas saw decreased rates of breast cancer screening
during this period. Conversely, parts of Illinois and Louisiana
showed reported mammography rates from 2018 to 2020.

Figure 1. Age-adjusted rates of breast cancer screening in US counties for (A) 2018 and (B) 2020. Spatial clusters in (C) 2018 and (D) 2020.

Machine Learning Analysis
Evaluation of the final RF model, along with the LR and
SVM models, based on R2 and RMSE of the testing dataset
is presented in Figure 2. The results indicate that the RF
model, with an optimal number of trees set to 500 and the
number of nodes (m) set to 4, outperforms both LR and SVM.
Specifically, the RF model achieved a higher R² value and

a lower RMSE, indicating its superior ability to capture and
predict the underlying patterns in the data. This performance
underscores the suitability of the RF model for this analysis.

Figure 3 depicts the relative importance of each factor,
as determined by SHAP values, at the census tract level
in predicting the rate of breast cancer screening across the
United States. The mean of SHAP values provides a measure
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of the overall contribution of each variable to the model’s
predictions. As evident from Figure 3, the proportion of the
Black population is the most important factor, followed by the
number of mammography facilities within a 10-mile distance
and the higher education rate. For the subsequent analysis, we
refined our focus to variables with SHAP values exceeding
0.3 (the top 6 variables) to assess the direction and magnitude
of influence that each variable exerts on the prediction of
breast cancer screening rates as the variables vary in value.

While assessing variable importance using mean SHAP
values offers crucial insights into the most influential factors
in predicting breast cancer screening rates, it does not

elucidate the direction of their effects on the outcome variable
across different variable values. To address this, we generated
scatterplots of individual SHAP values for the selected six
variables to examine the detailed changes in SHAP values
across varying values of these variables. Figure 4 shows that
higher proportions of the Black population, higher education
levels, an increased number of mammography facilities, and a
higher median home value exhibit positive associations with
breast cancer screening rates. Conversely, a higher proportion
of Hispanic ethnicity and a lack of health insurance demon-
strate negative impacts on the screening rates.

Figure 2. Comparison of the performance of random forest, linear regression, and SVM models in predicting breast cancer screening rates. RMSE:
root mean squared error; SVM: support vector machine.

Figure 3. SHAP values of each census tract–level factor in predicting the rate of breast cancer screening across the United States. SHAP: Shapley
Additive Explanations.
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Figure 4. Direction of influence illustrated by individual SHAP values on the prediction of breast cancer screening rates for the selected six important
variables. SHAP: Shapley additive explanations.

Discussion
Our research employed a combination of spatial analysis,
statistical methods, and machine learning techniques to
elucidate the disparities in breast cancer screening across
the United States. Spatial patterns revealed clusters of low
screening rates, particularly in central, midwestern, and
southern regions, contrasted with hotspots of mammography
rates, particularly evident along the east coast and in the
northern parts of the United States. A predictive model for
breast cancer screening rates was developed using the RF
algorithm. Meanwhile, key influencing factors for predict-
ing breast cancer screening rates were identified based on
the mean SHAP values, including the proportion of the
Black population, availability of mammography facilities, and
higher education rates.

Spatial clustering identified through Getis-Ord Gi statistics
reinforces the observed patterns and underscores their
persistence across two distinct time points (2018 and 2020).
The consistency of these spatial clusters suggests endur-
ing factors influencing breast cancer screening behavior in
specific areas, providing valuable information for policy
makers and health care professionals seeking to implement
targeted interventions.

It is crucial to acknowledge that the onset of the
COVID-19 pandemic has significantly impacted various
aspects of human life, including breast cancer screening [21].
The pandemic may have played a role in the decreased mean
breast cancer screening rate of breast cancer from 77% in
2018 to 76.51% in 2020. The disruption of routine health care
services and the challenges associated with social distancing

could have affected mammography screening rates, particu-
larly in urban areas with denser populations. However, it
is important to consider that the BRFSS survey focuses on
individuals who have undergone breast cancer screening in
the last two years. Consequently, women who underwent
mammography screening in the year prior to the COVID-19
pandemic could still respond affirmatively. The influence of
COVID-19 on the average rate and pattern of breast cancer
screening may vary significantly in 2022 and 2023, partic-
ularly in cities with higher disease prevalence. Additional
investigations are warranted to understand the influence of
COVID-19 on changes in breast cancer screening rates across
the United States and globally.

Our machine learning analysis that uses an RF model
contributes toward understanding the complex interplay of
various factors influencing breast cancer screening rates. The
RF model with optimal hyperparameters outperformed the
LR and SVM models. The ability of RF to capture com-
plex nonlinear relationships and interactions among influenc-
ing factors aligns with findings from other population-level
studies, highlighting its superiority in predicting population
health outcomes [22,23], which confirms our choice of RF as
the primary model for our analysis.

While the RF model demonstrated superior performance in
predicting breast cancer screening rates, there is a potential
risk of overfitting, inherent to ensemble methods [24]. To
mitigate this, we implemented cross-validation during the
hyperparameter tuning process and evaluated the model’s
performance on a separate testing dataset to ensure that the
RF model maintained its predictive accuracy on unseen data.
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It is particularly noteworthy that a higher proportion of
the Black population within a census tract was positively
associated with increased mammography screening rates.
This finding aligns with a 2022 cancer trends progress
report, which revealed that 82% of Black women under-
went mammography screening, while the screening rate
was as low as 74% among other ethnic groups [1]. Possi-
ble explanations for this positive association may include
the effectiveness of targeted public health interventions and
community-based outreach programs specifically designed
to increase awareness and accessibility of breast cancer
screening in these communities. Additionally, it may reflect
a growing awareness and proactive behavior regarding breast
cancer prevention among Black women, possibly influenced
by public health campaigns and community support networks.
Some studies also suggested that when access to health
care is equitable, racial and ethnic minorities who are often
more aware of their heightened risk, may be more likely to
use preventive services like mammography [25]. However,
despite the relatively higher mammography screening rates in
areas with a larger Black population, it is crucial to under-
score that Black women are 40% more likely to die from
breast cancer compared to White women [26]. This dispar-
ity could be attributed to delays in diagnosis and treatment,
particularly when a breast tissue abnormality is identified by
mammography [27,28]

Our findings highlighted the importance of the number of
available mammography facilities within a 10-mile radius,
despite the relatively low SHAP value assigned to the
distance to the nearest facility. A plausible explanation is
that proximity to a facility may not always be a decisive
factor, as various considerations such as affordability and
type of insurance can significantly impact facility selection.
Moreover, our research revealed that the education rate
plays a pivotal role in determining breast cancer screening
rates. This finding aligns with prior studies indicating that
American women with lower educational attainment are less
likely to undergo screening [29]. Educational attainment is
closely linked to health literacy [27]; women with lower
health literacy have a reduced likelihood of accessing health
services, including breast cancer screening [28]. Moreover,
women with lower educational attainment might face limited
employment opportunities and a lack of jobs that offer access
to employee health insurance, leading to a lower likelihood of
consulting physicians who recommend mammography.

The variables of home value, rate of the Hispanic
population, and rate of the uninsured population exhibited
relatively similar and high SHAP values. Areas with higher
home values and lower uninsured populations tend to have
fewer financial barriers to accessing preventive services.
According to existing literature, Hispanic women exhibit
lower rates of breast cancer and mortality compared to
non-Hispanic Black women and non-Hispanic White women
[30]. This disparity could explain the lower screening rate in
census tracts with higher proportions of Hispanic population.

Variables analyzed in this study are based on estimates
from the CDC PLACES project, which uses a multile-
vel regression and poststratification approach. This method
combines individual-level BRFSS data with demographic
data from the US Census to produce reliable estimates
at small geographic levels, including census tracts. The
multilevel regression and poststratification method has been
validated against direct survey data, ensuring that the
aggregated rates at the census tract level are both stable and
accurate for our analysis [31].

Our study has several limitations. The use of cross-sec-
tional data restricts our capacity to establish causality,
underscoring the importance of future research examining
temporal changes in breast cancer screening rates. More-
over, as is inherent in all self-reported sample surveys,
the BRFSS data may be susceptible to systematic errors
stemming from noncoverage, nonresponse, or measurement
bias. It is imperative to note that our study was conducted
at an aggregate level; therefore, prudence is advised when
extrapolating individual-level conclusions. The ecological
fallacy, a key concern in population studies, underscores the
necessity of avoiding assumptions about individual behaviors
based solely on group-level observations.

This study provides a comprehensive analysis of breast
cancer screening disparities in the United States, combin-
ing spatial, statistical, and machine learning approaches.
The spatial patterns and influential factors identified in this
study offer valuable insights for policy makers, health care
professionals, and researchers striving to implement targeted
interventions to reduce breast cancer screening disparities and
improve overall public health outcomes. Ongoing research
and targeted interventions are vital for achieving equitable
access to breast cancer screening services and ultimately
reducing the impact of this significant health issue.
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