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Abstract

Background: Salvage radiation therapy (sRT) is often the sole curative option in patients with biochemical recurrence after
radical prostatectomy. After sRT, we developed and validated a nomogram to predict freedom from biochemical failure.
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Objective: This study aims to evaluate prostate-specific membrane antigen–positron emission tomography (PSMA-PET)–based
sRT efficacy for postprostatectomy prostate-specific antigen (PSA) persistence or recurrence. Objectives include developing a
random survival forest (RSF) model for predicting biochemical failure, comparing it with a Cox model, and assessing predictive
accuracy over time. Multinational cohort data will validate the model’s performance, aiming to improve clinical management of
recurrent prostate cancer.

Methods: This multicenter retrospective study collected data from 13 medical facilities across 5 countries: Germany, Cyprus,
Australia, Italy, and Switzerland. A total of 1029 patients who underwent sRT following PSMA-PET–based assessment for PSA
persistence or recurrence were included. Patients were treated between July 2013 and June 2020, with clinical decisions guided
by PSMA-PET results and contemporary standards. The primary end point was freedom from biochemical failure, defined as 2
consecutive PSA rises >0.2 ng/mL after treatment. Data were divided into training (708 patients), testing (271 patients), and
external validation (50 patients) sets for machine learning algorithm development and validation. RSF models were used, with
1000 trees per model, optimizing predictive performance using the Harrell concordance index and Brier score. Statistical analysis
used R Statistical Software (R Foundation for Statistical Computing), and ethical approval was obtained from participating
institutions.

Results: Baseline characteristics of 1029 patients undergoing sRT PSMA-PET–based assessment were analyzed. The median
age at sRT was 70 (IQR 64-74) years. PSMA-PET scans revealed local recurrences in 43.9% (430/979) and nodal recurrences
in 27.2% (266/979) of patients. Treatment included dose-escalated sRT to pelvic lymphatics in 35.6% (349/979) of cases. The
external outlier validation set showed distinct features, including higher rates of positive lymph nodes (47/50, 94% vs 266/979,
27.2% in the learning cohort) and lower delivered sRT doses (<66 Gy in 57/979, 5.8% vs 46/50, 92% of patients; P<.001). The
RSF model, validated internally and externally, demonstrated robust predictive performance (Harrell C-index range: 0.54-0.91)
across training and validation datasets, outperforming a previously published nomogram.

Conclusions: The developed RSF model demonstrates enhanced predictive accuracy, potentially improving patient outcomes
and assisting clinicians in making treatment decisions.

(JMIR Cancer 2024;10:e60323) doi: 10.2196/60323
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Introduction

Prostate-specific antigen (PSA) is a protein produced by the
prostate gland, and its levels in the blood are commonly used
as a marker in the assessment of prostate health. PSA levels are
measured using an immunoassay, and elevated levels can be
indicative of prostate conditions including benign prostatic
hyperplasia or prostate cancer. Biochemical recurrence (BR)
refers to the increase in PSA levels after treatment; this occurs
in approximately 15% to 25% of patients following radical
prostatectomy (RP) for prostate cancer [1]. While BR does not
invariably lead to metastatic progression and death, the risk
significantly increases [2]. Salvage radiation therapy (sRT)
offers these patients with localized disease a second chance at
a cure [2-4]. Historically, prognostic nomograms by Stephenson
et al [5] and Tendulkar et al [6] provided valuable insights into
predicting outcomes after sRT. The Stephenson nomogram was
developed on a cohort of patients with a median PSA value of
1.1 (IQR 0.6-2.2) ng/mL. In contrast, the Tendulkar nomogram
included patients managed with ultrasensitive PSA assays, with
a median pre-sRT PSA of 0.5 (IQR 0.3-1.1) ng/mL.

However, recent advances in imaging have rendered traditional
recurrence prediction models obsolete. Prostate-specific
membrane antigen–positron emission tomography (PSMA-PET)
is a diagnostic tool that uses PSMA ligands to identify prostate
cancer. PSMA, a surface protein highly expressed in prostate

cancer cells, enables PSMA-PET to achieve exceptional
sensitivity and specificity in detecting cancer recurrence [7,8].
This high precision allows for more tailored and effective
radiotherapy planning. Both retrospective and prospective
studies have demonstrated that integrating PSMA-PET data
before sRT modifies the treatment strategy in approximately
30% to 50% of cases. [9,10]. This effect is evident even in
patients undergoing early sRT with PSA levels below 0.5 ng/mL,
as this group’s detection rate is approximately 50% [10,11].

Machine learning (ML) algorithms are increasingly used to
create prediction tools because they can swiftly process vast
datasets. They have been demonstrated to outperform clinical
experts in estimating patient survival in a cohort of patients with
lung cancer [12]. Comparisons of outcome prediction models
in other entities provided evidence that the reliability of
ML-based tools may be superior to those generated by traditional
nomograms [13,14]. Given these advancements, new risk models
are needed to predict sRT outcomes in the PSMA-PET era.

In previous work from our group, we developed a nomogram
to predict outcomes in patients with prostate cancer undergoing
sRT after RP [15]. In this study, we present a ML-based random
survival forest (RSF) model for risk prediction, using a
substantial international dataset of patients who underwent
PSMA-PET staging before sRT. We compared the prediction
accuracy with our previously published nomogram. This study
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represents the first prediction tool for PSMA-PET–staged
patients using a ML-based method derived from a large
international patient cohort.

Methods

Source of Data
Data for this study were contributed by 13 medical facilities
across 5 different countries: Germany (n=6), Cyprus (n=1),
Australia (n=3), Italy (n=1), and Switzerland (n=2). Each facility
contributed between 20 and 175 patients to the cohort (for more
details, see Multimedia Appendix 1). The participation of these
institutions in this multicenter study was approved by the
respective ethics committees. Reporting adhered to the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) reporting guidelines (Multimedia Appendix 1).
All ethics committees of the included institutions approved this
study.

Participants
Patients who underwent open or laparoscopic RP and received
PSMA-PET–based sRT for PSA persistence or recurrence (PSA
levels ≥0.1 ng/ml postprostatectomy) were included in this
study. Written informed consent was not required due to the
retrospective nature of the investigation and by review board
guidelines. Exclusion criteria involved distant metastases on
PSMA-PET or computed tomography scan and initiation of
androgen deprivation therapy (ADT) before PSMA-PET or
computed tomography scan. A total of 1221 patients met the
inclusion criteria and underwent sRT between July 1, 2013, and
June 30, 2020. Out of these, 192 individuals were excluded:
141 individuals had insufficient clinical data, 47 individuals
had no prostatic fossa in the sRT field, and 4 individuals had
PSMA-PET–positive lesions outside the sRT field.

Consequently, 1029 patients with complete data participated in
developing and validating the ML algorithm. A total of 50
patients’ data were used for external validation, 708 patients’
data were used for training, and 271 patients’ data were used
for testing.

No formal sample size was elaborated. All patients with
inclusion criteria were supposed to be eligible for the analysis,
and the number of participants was deemed relevant to
developing ML algorithms.

Treatment and Follow-Up
Treating clinicians made clinical choices based on PSMA-PET
results and current standards of care. The institutional clinical
practice involved intensity-modulated, image-guided sRT to
the prostatic fossa, occasionally with a concurrent integrated
boost to local recurrence. Additional treatments, such as elective
pelvic lymphatic radiation and ADT, were administered based
on patient risk characteristics. Follow-up evaluations adhered
to institutional clinical practices including periodic serum PSA
testing and restaging for BR. BR was defined as 2 consecutive
rising PSA values >0.2 ng/mL after treatment.

Predictors
Predictors were strictly the same as in the previous work from
our group [15]. They included the International Society of
Urological Pathology grade of the surgical specimen,
pathological T stage (pT stage), resection status, PSA serum
values before sRT, ADT use, dose in the prostate, persistence
of PSA levels after surgery, and presence of pelvic lymph nodes
or local recurrence before sRT. Based on clinical expertise,
some variables with limited predictive value in previous studies
were excluded from the analysis [6,16].

Statistical Analysis—Model Development and
Validation
We used the RSF classifier for survival analysis, an extension
of the random forests ML algorithms in a context of
right-censored survival data, based on prior research
demonstrating its efficacy in predicting freedom from
biochemical failure (FFBF), defined as 2 consecutive PSA rises
>0.2 ng/mL after treatment, after sRT [17]. We first separated
the dataset into 2 parts: an external outlier validation dataset
and a learning dataset.

The outlier validation dataset consisted of 50 patients from the
most dissimilar center, which was selected based on a principal
component analysis that excluded the center variable (see our
previous published work [15]). This ensured that the validation
dataset represented a more diverse range of patients than the
learning dataset.

The remaining patients (979 patients in total) were used to
develop 900 models. Indeed, we selected 30 seeds at random
between 1 and 10,000 with uniform distribution. The seeds
ensure different random splits of the data, while the uniform
distribution avoids bias by giving each seed an equal chance of
being chosen. For each seed, to provide an accurate assessment
of RSF internal validity, we divided 30 times the learning dataset
into training and internal validation datasets (ratio 75:25) with
stratified random sampling for stratification factors (see eTable
4 in Supplement 1 in Zamboglou et al [15]), allowing the use
of common attributes in the data to form strata before sampling,
resulting in a more representative and general sample.

Each model resulted from an RSF that was grown using 1000
trees. Simultaneous optimizations of the number of trees in the
forest and the number of predictors available to be selected from
at each split were obtained by a grid search (100, 500, and 1000
for the number of trees; 1 to 8 for the number of predictors)
with 10-fold cross-validation on the training dataset. The
splitting rule was based on the logrank test. A random selection
of split points is considered for each predictor.

Several metrics served to evaluate the predictive performances
of each model. First, we used the Harrell concordance index
(C-index) [18]. The higher the C-index, the better the
discriminatory power of the model. The Harrell C-index was
further classified according to the Altman Strength of Agreement
[19]. Separate boxplots graphically represented the distribution
of the predictive performances, in each dataset. We defined the
model having the highest Harrell C-index on the internal
validation dataset as our best RSF model. The corresponding
seed for randomness is given.
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Second, we added the Brier score, which served as a measure
of both discrimination and calibration [20]. The lower the Brier
score, the higher the predictive quality of the model. Minimal
and maximal values (ie, range values) of the Harrell C-index
and Brier score in the training, internal validation, and external
outlier datasets were given separately.

The importance and relative importance values of the predictors
were calculated. The relative importance provides a normalized
measure, allowing for a comparison between predictors. The
higher the value, the greater the importance of variables in the
outcome prediction.

The Harrell C-index and Brier score of our best RSF model
were measured at each time point between 12 and 85 months,
with an interval of 1 month, in the training, internal validation,
and external outlier validation datasets. To compare the
prediction accuracy with our Cox proportional hazard model,
previously published as a nomogram, we applied the latter at
each time point, too. Results were displayed graphically,
presenting the Harrell C-index and Brier score from our best
RSF model and previous Cox proportional hazard model as a
function of time. Minimal and maximal values (ie, range values)
of the Harrell C-index and Brier score in the training, internal
validation, and external outlier datasets were given separately.

All statistical analysis was conducted using R Statistical
Software (version 4.2.1; R Foundation for Statistical
Computing). Descriptive statistics are given by either range,
median (IQR), or number (percentage in %), according to
variable nature. Stratified random sampling was performed
using the Splitstackshape package (version 1.4.8). The Fisher
exact or chi-square test was used to compare clinical and
treatment characteristics between different subdatasets. We used
the randomForestSRC package (version 3.2.1) for RFS model
training and SurvMetrics (version 0.5.0) for the Harrell C-index
and Brier score. The importance and relative importance values
of the predictors in the RSF were calculated using the VIMP
function [21]. A 2-sided P value of <.05 was considered as the
significance level.

Ethics Considerations
This study adhered to ethical standards across all recruiting
centers, with ethical approval obtained from each institution
involved. Given the retrospective nature of the study, informed
consent was waived, as is permitted for studies involving
secondary analysis of existing data. The primary data collection
was conducted under the appropriate ethical guidelines, with
the original informed consent covering the use of data for
secondary analysis without requiring additional consent. To
ensure privacy and confidentiality, all study data were

deidentified, maintaining the anonymity of participants. No
compensation was provided to participants in this study,
reflecting the nature of the research and ensuring transparency
in the process. The file number for ethical approval from Bern
University Hospital is BE 2021-02294.

Results

Baseline Patient and Treatment Characteristics
In this study, we adopted the same formulation as previously
published [15]. We analyzed the baseline patients and treatment
characteristics of the entire cohort, which consisted of 1029
patients with a median age at sRT of 70 (IQR 64-74) years. For
that publication, the cohort was already divided into a training
set (n=708), an internal validation set (n=271), and an external
outlier validation dataset (n=50), and these groups are
summarized in Table 1.

Within the learning cohort (comprising the training and internal
validation sets; n=979), most patients (n=610, 62.3%) had PSA
serum values of 0.5 ng/mL or less before sRT. Locally recurrent
disease detected by PET scan was present in 43.9% (n=430) of
patients, while 27.2% (n=266) of patients had at least 1 positive
pelvic lymph node on PET scan. Among the patients, 32.2%
(n=315) of patients received ADT without any escalation of
systemic therapy beyond ADT. The most commonly
administered equivalent dose of 2 Gy per fraction (EQD2,
α/β=1.6 Gy) to the prostatic fossa or locally recurrent disease
was 66 to 70 Gy (n=547, 55.9% of patients).

PSMA-PET scans conducted before sRT revealed local
recurrences in 43.9% (n=430) of patients and nodal recurrences
in 27.2% (n=266) of patients. sRT to elective pelvic lymphatics
was administered to 35.6% (n=349) of patients. All pelvic lymph
node PETs received dose-escalated sRT; the most frequent dose
(149/317, 56%) was 50 to 60 Gy (EQD2, α/β=1.6 Gy).

No significant difference in clinical and treatment characteristics
was observed between the patients in the training and the
internal validation cohorts (all P>.05; Table 2). However, the
external outlier cohort exhibited distinct features, with no
patients having negative PSMA-PET scans, significantly higher
rates of complete resection (44/50, 88% vs 629/979, 64.2% of
patients; P=.001), and a significantly greater proportion of
patients with positive pelvic lymph nodes (47/50, 94% vs
266/979, 27.2% of patients; P<.001) as compared to the learning
cohort (Table 3). Furthermore, the delivered dose to the prostatic
fossa was significantly lower for the patients in the external
outlier cohort than in the learning cohort (57/979, 5.8% vs 46/50,
92% of patients with a dose less than 66 Gy; P<.001).
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Table 1. Baseline treatment characteristics among training set, internal validation set, and external outlier validation set.

External outlier valida-
tion dataset (n=50)

Internal validation dataset
(n=271)

Training dataset (n=708)Total cohort (n=1029)Characteristic

72.5 (68-76)69 (63-74)70 (64-74)70 (64-74)Age at sRTa (years), median (IQR)

pT stageb, n (%)

28 (56)122 (45)310 (43.8)460 (44.7)2

11 (22)86 (31.7)230 (32.5)327 (31.8)3a

11 (22)61 (22.5)163 (23)235 (22.8)3b

0 (0)2 (0.7)5 (0.7)7 (0.7)4

R statusc in surgery, n (%)

44 (88)181 (66.8)448 (63.3)673 (65.4)RO

6 (12)77 (28.4)244 (34.5)327 (31.8)R1

0 (0)2 (0.7)1 (0.1)3 (0.3)R2

0 (0)11 (4.1)15 (2.1)26 (2.5)Rx

ISUPd grade in surgery, n (%)

16 (32)101 (37.3)254 (35.9)371 (36.1)1+2

14 (28)84 (31)226 (31.9)324 (31.5)3

10 (20)44 (16.2)102 (14.4)156 (15.2)4

10 (20)42 (15.5)126 (17.8)178 (17.3)5

PSAe persistence after surgery, n (%)

42 (84)197 (72.7)511 (72.2)750 (72.9)No

8 (16)74 (27.3)197 (27.8)279 (27.1)Yes

PSA (ng/mL) before sRT, n (%)

5 (10)63 (23.3)178 (25.1)246 (23.9)0.01-0.2

16 (32)111 (41)258 (36.4)385 (37.4)>0.2-0.5

9 (18)41 (15.1)122 (17.2)172 (16.7)>0.5-1

20 (40)56 (20.7)150 (21.2)226 (22)>1

Local recurrence after PSMA-PETf, n (%)

43 (86)153 (56.5)396 (55.9)592 (57.5)No

7 (14)118 (43.5)312 (44.1)437 (42.5)Yes

Pelvic lymph nodes after PSMA-PET, n (%)

3 (6)206 (76)507 (71.6)716 (69.6)No

47 (94)65 (24)201 (28.4)313 (30.4)Yes

Dose to the prostatic fossa (Gyg), n (%)

46 (92)10 (3.7)47 (6.6)103 (10)<66

4 (8)157 (57.9)390 (55.1)551 (53.6)66-70

0 (0)104 (38.4)271 (38.3)375 (36.4)>70

sRT to elective pelvic lymphatics, n (%)

4 (8)174 (64.2)455 (64.4)633 (61.6)No

46 (92)97 (35.8)252 (35.6)395 (38.4)Yes

Dose to elective pelvic lymphatics (Gy), n (%)

44 (100)71 (26.2)197 (27.8)312 (30.3)<50

0 (0)13 (4.79)34 (4.80)47 (4.6)>50
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External outlier valida-
tion dataset (n=50)

Internal validation dataset
(n=271)

Training dataset (n=708)Total cohort (n=1029)Characteristic

2 (4)13 (4.8)21 (3)36 (3.5)Unknown

Irradiation to positive pelvic LNh, n (%)

3 (6)204 (75.3)505 (71.3)712 (69.2)No

47 (94)67 (24.7)203 (28.7)317 (30.8)Yes

Dose to positive pelvic LNs (Gy), n (%)

0 (0)4 (1.5)11 (1.6)15 (1.5)<50

0 (0)36 (13.3)113 (16)149 (13.5)50-60

45 (90)20 (7.4)63 (8.9)128 (12.4)>60

2 (4)7 (2.6)16 (2.3)25 (2.4)Unknown

ADTi, n (%)

40 (80)189 (69.7)475 (67.1)704 (68.4)No

10 (20)82 (30.3)233 (32.9)325 (31.6)Yes

Duration of ADT admission (months), n (%)

0 (0)15 (22.7)50 (24.4)65 (23.1)<6

7 (70)24 (36.4)79 (38.5)110 (39.2)6-12

0 (0)18 (27.3)39 (19.0)57 (20.3)>12-24

3 (30)9 (13.6)37 (18.1)49 (17.4)>24

0 (0)16 (5.9)28 (4.0)44 (4.3)Unknown

asRT: salvage radiation therapy.
bpT stage: pathological T stage.
cR status: residual disease status.
dISUP: International Society of Urological Pathology.
ePSA: prostate-specific antigen.
fPSMA-PET: prostate-specific membrane antigen–positron emission tomography.
gGy: gray (a unit of radiation dose).
hLN: lymph node.
iADT: androgen deprivation therapy.
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Table 2. Comparison between training cohort and internal outlier validation datasets (P value based on Fisher exact or chi-square test).

P valueInternal validation dataset (n=271), n (%)Training dataset (n=708), n (%)Covariate, n (%)

.94pT stagea

122 (45)310 (43.8)pT2

86 (31.7)230 (32.5)pT3a

63 (23.3)168 (23.7)pT3b+pT4

.31R statusb

181 (66.8)448 (63.3)R0

90 (33.2)260 (36.7)R1/2+Rx

.69ISUPc grade

101 (37.3)254 (35.9)1+2

128 (47.2)328 (46.3)3+4

42 (15.5)126 (17.8)5

.17Pelvic lymph nodes on PETd

206 (76)507 (71.6)No

65 (24)201 (28.4)Yes

.45PSAe prior to sRTf

174 (64.2)436 (61.6)<0.5 ng/mL

97 (35.8)272 (38.4)>0.5 ng/mL

.20sRT dose to the prostatic fossaf

10 (3.69%)47 (6.6)<66 Gyg

157 (57.9)390 (55.1)66-70 Gy vs <66 Gy

104 (38.4)271 (38.3)>70 Gy

.43ADTi

189 (69.7)475 (67.1)No

82 (30.3)233 (32.9)Yes

apT stage: pathological T stage.
bR status: residual disease status.
cISUP: International Society of Urological Pathology.
dPET: positron emission tomography.
ePSA: prostate-specific antigen.
fsRT: salvage radiation therapy.
gGy: gray (a unit of radiation dose).
iADT: androgen deprivation therapy.
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Table 3. Comparison between learning cohort (training+internal validation cohort) and external outlier cohort (P value based on Fisher exact or
chi-square test).

P valueExternal (n=50), n (%)Learning (n=979), n (%)Covariate, n (%)

.21pT stagea

28 (56)432 (44.1)pT2

11 (22)316 (32.3)pT3a

11 (22)231 (23.6)pT3b+pT4

.001R statusb

44 (88)629 (64.2)R0

6 (12)350 (35.8)R1/2+Rx

.79ISUPc grade

16 (32)355 (36.3)1+2

24 (48)456 (46.6)3+4

10 (20)168 (17.2)5

<.001Pelvic lymph nodes on PETd

3 (6)713 (72.9)No

47 (94)266 (27.2)Yes

.004PSAe before sRTf

21 (42)610 (62.3)<0.5 ng/ml

29 (58)369 (37.7)>0.5 ng/ml

<.001sRT dose to the prostatic fossa

46 (92)57 (5.8)<66 Gyg

4 (8)547 (55.9)66-70 Gy vs <66 Gy

0 (0)375 (38.3)>70 Gy

.07ADTg

40 (80)664 (67.8)No

10 (20)315 (32.2)Yes

apT stage: pathological T stage.
bR status: residual disease status.
cISUP: International Society of Urological Pathology.
dPET: positron emission tomography.
ePSA: prostate-specific antigen.
fsRT: salvage radiation therapy.
gGy: gray (a unit of radiation dose).
hADT: androgen deprivation therapy.

Among the patients with positive lymph nodes detected on PET
scans (n=349), 52.4% (n=183) of patients received ADT,
whereas 47.6% (n=166) of patients did not. No significant
difference was observed in the distribution of the International
Society of Urological Pathology (ISUP) grade and pT stage (all
P>.05; Table 3).

Model Development and Validation
All training subsets comprised 708 patients while corresponding
internal validation sets contained the 271 remaining patients.

Figure 1 summarizes the performance obtained from the 900
developed RSF models after training and further application to
the internal and external outlier validation datasets. The Harrell
C-index values of the training datasets showed good
concordances ranging from 0.79 to 0.91. The internal validation
dataset showed moderate to good concordances ranging from
0.54 to 0.73, while the external outlier validation dataset, showed
good concordances ranging from 0.60 to 0.76.
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Figure 1. Harrell C-indexes of the 900 RSF models in the training, internal validation, and external validation datasets. C-index: concordance index.
RSF: random survival forest.

Our best model (the highest Harrell C-index on the internal
validation dataset) was the one at the 15th iteration with the
seed being 7332. Its Harrell C-index values were 0.79, 0.72,
and 0.69 in the training, internal validation, and external outlier
validation datasets, respectively. The corresponding training
and internal validation recorded 200 (28.2%) out of 708 and 77
(28.4%) out of 271 patients with cancer relapse, respectively.

Correspondingly, Brier score results ranged from 0.12 to 0.15,
from 0.10 to 0.20, and from 0.12 to 0.16 in the training, internal
validation, and external outlier validation datasets, respectively.
Brier scores related to our best model equaled 0.13, 0.14, and
0.14, respectively.

Table 4 presents the importance and relative importance values
of the predictors in our best RSF model. The predictors with
the highest importance values were PSA before sRT and pelvic
nodal recurrence. Conversely, the predictor with the lowest
importance value was PSA persistence.

In training, internal validation, and external outlier validation
datasets, our best RSF model exhibited higher Harrell C-indexes
(0.79, 0.72, and 0.69) than our nomogram previously published
(0.68, 0.72, and 0.67, respectively). Our best RSF model showed
higher Brier scores but more stable results across the datasets
than the model for our nomogram (best RSF=0.13, 0,14, 0,14
vs Cox=0.12, 0,13, 0,15 for training, internal validation, and
external outlier validation datasets, respectively).

The Harrell C-indexes of our best RSF model compared to our
nomogram previously published, when measured at time points
of 12-85 months with an interval of 1 month in training, internal,
and external outlier validation datasets, are shown in Figure 2A,
while Figure 2B shows the Brier scores of our best RSF model
and our nomogram previously published when measured at time
points of 12-85 months with an interval of 1 month, according
to the subdatasets.
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Table 4. Predictor importance and relative importance in the RSFa model.

Relative importanceImportancePredictor

10.071PSAb prior sRTc (ng/mL)

0.9200.065Pelvic nodal recurrence on PETd

0.7770.055pT statuse

0.7050.050ISUPf grade

0.4150.029Dose to prostatic fossa (Gyg)

0.2990.021ADTh

0.1900.014R statusi

0.1750.012Pelvic local recurrence on PET

–0.116–0.008PSA persistence

aRSF: random survival forest.
bPSA: prostate-specific antigen.
csRT: salvage radiation therapy.
dPET: positron emission tomography.
epT status: pathological T status.
fISUP: International Society of Urological Pathology.
gGy: gray (a unit of radiation dose).
hADT: androgen deprivation therapy.
iR status: residual disease status.

Figure 2. (A) Harrell C-indexes and (B) Brier scores of our best RSF model versus our Cox proportional hazard model previously published, in the
training, internal validation, and external validation datasets over time (12-85 months interval, with a 1-month increment). RSF: random survival forest.
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Discussion

Principal Findings
This study is the first study reporting an RSF model on prostate
cancer patients across 5 countries undergoing PSMA-PET–based
sRT. It presents a robust predictive performance (Harrel C-index
0.54-0.91) and outperforms the previously published nomogram.

Comparison to Prior Work
The medical community is constantly striving to develop and
refine predictive tools that can accurately identify the most
effective care management options for patients. By doing so,
health care providers can offer personalized care that maximizes
patient outcomes while minimizing adverse reactions and being
cost-effective. Nomograms were and are constantly used, and
the great potential of an ML approach for dynamic prediction
in medicine is now emerging [22]. In this context, using a large
international dataset of patients who underwent PSMA-PET
staging before sRT, this study aimed at developing a ML-based
RSF model to predict FFBF and comparing the prediction
performances with our previously published nomogram based
on a Cox proportional hazards model [15].

Our best RSF model performed well after training (Harrell
C-index=0.79). Furthermore, it showed good robustness and
generalizability, maintaining good performances on the internal
validation set (C-index=0.72) and the external outlier validation
dataset (C-index=0.69). In all cases, our best RSF model
outperformed the previously built nomogram on the same
datasets (0.67, 0.71, and 0.66). Our previously published
nomogram included 7 variables found to be statistically
significant in our multivariable Cox proportional hazards
regression analysis (pre-sRT PSA level, ISUP grade in surgery
specimen, pT stage, surgical margins, ADT use, sRT dose to
the fossa, and nodal recurrence detected on PSMA-PET scans)
[15]. In addition to these 7 variables, our best RSF evaluated
PSA persistence, based on the known literature of poor
prognosis when this characteristic is present, and pelvic local
recurrence on PSMA-PET scan, based on a recent paper showing
that the presence of local recurrence was associated with
favorable BR-free survival [23-25].

Out of the 9 variables, the one with the highest importance was
the value of PSA before sRT, which was consequently
associated with a relative importance of the model of 1. This
result confirms what is known in the literature, and specifically,
in a very recent paper studying a retrospective cohort of 25,551
patients over a period time of 30 years, it was found that
performing sRT when PSA values fall above 0.25 ng/mL was
associated with an increased all-cause mortality risk [24,26].
The second variable with the highest relative importance (0.92)
for the model was the nodal recurrence detected on PSMA-PET
scans. These data confirm the importance of performing a
PSMA-PET in patients with BR, as well as the data found in
the previous preliminary analysis [16,25].

On the other hand, the presence of pelvic local recurrence on
the PSMA-PET scan had a relative importance of 0.175.
Surprisingly, PSA persistence had a negative relative importance
(–0.11). This statistical result suggests that randomly shuffling

this variable helped the model perform slightly better, meaning
that the variable might be adding confusion rather than helping
with predictions. This needs to be further analyzed, as this would
imply that PSA persistence after RP may have a negligible
impact on the prediction of the outcome of sRT.

Yet, our findings align with the guidelines of the American
Urological Association, American Society for Radiation
Oncology, and Society of Urologic Oncology, which recommend
treatment intensification for patients undergoing sRT when risk
factors, such as elevated PSA levels, higher ISUP, advanced
T-stage, and pelvic lymph node metastases, are present. These
factors have also been significant predictors of FFBS in our
analysis. Additionally, our findings may help identify patients
most likely to encounter biochemical failure by weighing risk
factors against each other. Thus, our RSF model may allow
more differentiated decision-making in terms of potential
treatment intensification such as the administration of ADT.

As expected, our best RSF model performed better on the
training dataset than on the validation datasets. One could
suspect some indication of overfitting to the data from the
training set since there was a difference of –0.10 in prediction
performances between the training and the external outlier
validation datasets. However, our best RSF model still
outperformed our previously published nomogram, as the former
almost reached a threshold of 0.70 regarding its performance
in the external validation dataset. Due to the extensive
recruitment in the study, and even if unbalanced classification
setting, we deemed training and internal validation datasets to
have appropriate numbers of events and numbers of patients
(200/708, 28.2% and 77/271, 28%, respectively) to feel
confident in the performance estimates. In the external validation
dataset, the 50 patients experienced 24 events and performances,
which may need further confirmation, as discussed later.

Strengths
This study relied on solid methodological foundations. First,
being multicenter, this study captured clinically relevant
information across the differences in care management and
clinical practices from 13 centers in 5 countries. Second, our
recruitment period can be considered relatively short. Even in
a retrospective setting, it helped reduce the impact of follow-up
and care support that were not standardized from one center to
another, from one country to another. Third, our training and
internal validation datasets contained large numbers of patients
and were highly comparable. This helped us choose the best
model on similar and naïve data owing to unseen data when
training the ML model (internal validation dataset). Fourth, all
variables exhibited a reasonable unbalance across their
categories during the training, without class counting less than
20% of patients except for the ISUP grade 5 and the sRT dose
to the prostatic fossa <66 Gy, with 17.8% and only 6.6% of
concerned patients, respectively. Fifth, we designed a prediction
model study of type 3 according to the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statement, with the most dissimilar
center being available as a separate dataset for validation [27].
Sixth, to compare the prediction accuracies of our best
ML-based RSF with our previously published nomogram, we
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used the same design, including seeds, splits, and datasets, as
those exploited for the nomogram. This allowed us to compare
the exact and meaningful metrics (Harrell C-index and Brier
score) on the internal validation dataset, and more importantly,
the external outlier validation dataset. Seventh, we used the
same variables to develop our previously published nomogram
and our best ML-based RSF. No new variable was added for
the training of our ML-based as compared to the development
of our previously published nomogram.

Limitations
Nevertheless, this study is subject to many limitations previously
reported with our nomogram [15]. First, this study had a large
patient cohort, but its multicenter nature meant different
treatment regimens. Therefore, to make the model transferable,
we did not include the variable “center” in the analysis. Second,
our analysis is subject to bias inherent in retrospective studies,
highlighting the need for prospective trials. Continuous variables
were recorded, and this may have limited our ability to make
better prognostic assessments. Third, the external outlier
validation cohort, the same one used for our previous nomogram,
only had 50 patients, which could affect the generalizability of
the RSF model [15]. So, further evaluation within another
external center, or even in another country, may help obtain
more patients, thus providing more accurate estimates for
predictive performances and better delineating the ability to
generalize. We would then present a type 4 analysis, which is
the highest degree of development and validation of a prediction
model according to the TRIPOD classification of prediction
model studies until TRIPOD-AI is published [27,28]. In
addition, no other models than RSFs were trained. This could
be done in the following work. In particular, it could be
interesting to develop models, such as gradient boosting, support
vector, or Bayesian theories, based on other theoretical grounds
than those from decision trees.

Fourth, missing data were handled by exclusion only. This led
to 141 potential patients being useless for developing and
validating our previously published nomogram and our best
RSF presented here. Creating missing data could be explored
to detect those missing at random, and a replacement strategy
could then be put in place, at least for some patients, in
sensitivity analyses for the training. Sabbagh et al [29] expressed

the criticism that our previously published nomogram was based
on a Cox proportional hazards model without accounting for
competing risks. One can address the same remark to our best
RSF here. However, adapting ML algorithms in the presence
of competing risks is still under development and is not yet fully
ready for use. One application could be misleading in its
interpretation and give a false conclusion.

Future Directions
Despite these limitations, the findings of this study provide
valuable insights into the possibility of integrating the RSF
model when evaluating variables for predictive models, and the
reliable performance of the RSF model in both validation sets
enhances its applicability in real-world clinical settings. This
includes the assessment of the personalized risk of FFBF, which
could, in turn, lead to customized follow-up management or the
assessment of risk stratification [27].

By going one step further, we are already aware that PSMA
dosage and FFBF risk stratification are expected to expand in
the next few months and years. This should influence patients’
management, follow-up, and prognosis by changing the
probability of persistence or relapse. This means that our best
RSF should be updated by retraining and transfer learning in
some days, even if we cannot give a precise horizon yet. We
also have developed a user-friendly app to facilitate easy access
to our risk prediction model for clinicians and researchers [30].

Conclusions
This study is the first prediction tool for PET-staged patients in
the sRT field, highlighting the potential of an RSF model
compared to a nomogram in predicting treatment outcomes.
The RSF model demonstrated improved predictive accuracy
compared to the model for identifying patients who may benefit
from PSMA-PET-based sRT, maintaining robustness and
generalizability across validation sets. Including additional
variables in the RSF model, such as PSA persistence and pelvic
local recurrence on PSMA-PET scans, provided valuable
insights. Despite limitations, this study enhances the
applicability of the RSF model in real-world clinical settings.
It can improve patient outcomes and assist clinicians in making
treatment decisions.
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