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Abstract

Background: The treatment of acute myeloid leukemia (AML) in older or unfit patients typically involves a regimen of
venetoclax plus azacitidine (ven/aza). Toxicity and treatment responses are highly variable following treatment initiation and
clinical decision-making continually evolves in response to these as treatment progresses. To improve clinical decision support
(CDS) following treatment initiation, predictive models based on evolving and dynamic toxicities, disease responses, and other
features should be developed.

Objective: This study aims to generate machine learning (ML)–based predictive models that incorporate individual predictors
of overall survival (OS) for patients with AML, based on clinical events occurring after the initiation of ven/aza or 7+3 regimen.

Methods: Data from 221 patients with AML, who received either the ven/aza (n=101 patients) or 7+3 regimen (n=120 patients)
as their initial induction therapy, were retrospectively analyzed. We performed stratified univariate and multivariate analyses to
quantify the association between toxicities, hospital events, and short-term disease responses and OS for the 7+3 and ven/aza
subgroups separately. We compared the estimates of confounders to assess potential effect modifications by treatment. 17
ML-based predictive models were developed. The optimal predictive models were selected based on their predictability and
discriminability using cross-validation. Uncertainty in the estimation was assessed through bootstrapping.

Results: The cumulative incidence of posttreatment toxicities varies between the ven/aza and 7+3 regimen. A variety of laboratory
features and clinical events during the first 30 days were differentially associated with OS for the two treatments. An initial
transfer to intensive care unit (ICU) worsened OS for 7+3 patients (aHR 1.18, 95% CI 1.10-1.28), while ICU readmission adversely
affected OS for those on ven/aza (aHR 1.24, 95% CI 1.12-1.37). At the initial follow-up, achieving a morphologic leukemia free
state (MLFS) did not affect OS for ven/aza (aHR 0.99, 95% CI 0.94-1.05), but worsened OS following 7+3 (aHR 1.16, 95% CI
1.01-1.31) compared to that of complete remission (CR). Having blasts over 5% at the initial follow-up negatively impacted OS
for both 7+3 (P<.001) and ven/aza (P<.001) treated patients. A best response of CR and CR with incomplete recovery (CRi) was
superior to MLFS and refractory disease after ven/aza (P<.001), whereas for 7+3, CR was superior to CRi, MLFS, and refractory
disease (P<.001), indicating unequal outcomes. Treatment-specific predictive models, trained on 120 7+3 and 101 ven/aza patients
using over 114 features, achieved survival AUCs over 0.70.

Conclusions: Our findings indicate that toxicities, clinical events, and responses evolve differently in patients receiving ven/aza
compared with that of 7+3 regimen. ML-based predictive models were shown to be a feasible strategy for CDS in both forms of
AML treatment. If validated with larger and more diverse data sets, these findings could offer valuable insights for developing
AML-CDS tools that leverage posttreatment clinical data.
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Introduction

Acute myeloid leukemia (AML) is an aggressive malignancy
of the myeloid cells in the hematopoietic system [1]. Without
treatment, patients can die within days to months due to
infection, bleeding, organ damage, or other complications. The
treatment approaches for AML vary significantly based on the
patient’s ability or willingness to tolerate intensive therapy [1,2].
For young and fit patients, a typical intensive therapy approach
involves induction treatment with anthracycline and cytosine
arabinoside, commonly known as 7+3 therapy. This is followed
by additional consolidative chemotherapy or an allogeneic stem
cell transplantation (alloSCT), depending on the genetic features
of the AML at diagnosis, as well as the clinical status of the
patient and the AML after induction therapy [3,4]. This intensive
approach is potentially curative but is associated with high
morbidity, mortality, cost, and prolonged hospital stays. For
patients who are not suitable for, or choose to decline, this
intensive approach due to age, fitness, or personal preference
at diagnosis, the Bcl-2 inhibitor venetoclax, in combination with
a hypomethylating agent such as azacitidine or decitabine, has
become a new standard of care [5-7]. This strategy is typically
aimed at prolonging life rather than achieving a cure and is
associated with less morbidity, treatment-related mortality, and
time spent in the hospital compared with intensive approaches
[8].

We and others have described a variety of features of both
patients and AML at diagnosis that are associated with long-term
survival and other outcomes following treatment with either
intensive approaches or venetoclax plus azacitidine
(ven/aza)–based treatments [9-11]. However, the treatment
course for patients with AML is highly variable, and factors
such as “fitness” can change significantly, for better or worse,
during treatment. Additionally, there is significant variability
in AML responses to therapy during treatment, which are
difficult to predict at diagnosis. As a result, prognosis and
clinical decision-making can evolve significantly based on
events and responses occurring after the initiation of treatment.
Therefore, identifying key prognostic features that develop
following treatment and are associated with long-term disease
behavior and survival is essential for refining clinical
decision-making over time. For intensive treatment approaches,
events such as the achievement of a morphologic complete
remission (CR), the presence or absence of minimal residual
disease (MRD) detected by flow cytometry or next-generation
sequencing, and other AML-related assessments that occur
following the initiation of therapy are predictive of long-term
outcomes [12-28]. Many of these early response indicators are
useful for guiding subsequent therapeutic decisions. For
example, the presence of MRD after induction therapy with 7+3
or other intensive treatments can predict the success of alloSCT,
guide the choice of transplant type, and identify high-risk

patients who may benefit from post-transplant maintenance
therapy [16,18-20,29-33]. In ven/aza treatment, achieving MRD
negativity is associated with improved event-free survival and
overall survival (OS) [34]. However, in contrast to intensive
approaches, there is limited knowledge about how toxicities,
early clinical events, and short-term treatment responses are
associated with disease behavior and long-term patient outcomes
with this therapy.

To address this gap, we evaluated clinical events, toxicities,
short-term outcomes, biomarkers, and other features occurring
after the initiation of treatment with either 7+3 or ven/aza to
understand their association with OS. Additionally, we
developed models to assess the long-term dynamic behavior of
responses to 7+3 and ven/aza based on short-term disease
responses. These studies reveal substantial differences in the
clinical and AML features that evolve with the 2 different
treatments and highlight how these differences impact prognosis
and clinical decision-making.

Methods

Patient Populations
Adult, newly diagnosed AML patients who received initial
induction therapy with either the ven/aza regimen or the 7+3
regimen at the University of Colorado Hospital (UCH) between
January 1, 2013, and December 31, 2020, were included in the
study. Patients with acute promyelocytic leukemia and those
who voluntarily withdrew within less than 28 days of treatment
were excluded. Patient baseline characteristics are summarized
in Table S1 in Multimedia Appendix 1. Note that this patient
cohort is a subset of the analytical data set as previously
described [10]. For exploratory analyses, 120 patients treated
with 7+3 and 101 patients treated with ven/aza were included
(Figure S1 in Multimedia Appendix 1). Best response analyses
were based on 118 out of 120 (98.3%) of the 7+3 patients and
all (101/101, 100%) of the ven/aza patients (including those
who died before response assessment). For the multistate
transition analyses, 115 out of 120 (95.8%) of the 7+3 patients
and 98 out of 101 (97.0%) of the ven/aza patients had sufficient
data after excluding those without at least one response
assessment or who died before their first response assessment.
Additionally, 111 out of 120 (92.5%) of the 7+3 patients and
91 out of 101 (90.1%) of the ven/aza patients had 30-day
follow-up data adequate for developing machine learning (ML)
models.

Ethical Considerations
This study was a retrospective analysis utilizing a limited data
set. A full waiver of consent and a full waiver of Health
Insurance Portability and Accountability Act (HIPAA)
authorization were granted by the Colorado Multiple
Institutional Review Board (approval number 18-1861). The
limited data set was securely stored on a HIPAA-compliant,
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cloud-based data platform, and accessible only to members of
the study team.

Outcome Definitions
Treatment responses, including CR, CR with incomplete
hematologic recovery (CRi), morphologic leukemia-free state
(MLFS), progressive disease, and stable disease, were defined
according to the standard 2017 European LeukemiaNet (ELN)
criteria [35]. A patient was classified as “refractory” if the
disease persisted after 90 days from the start of treatment or if
the disease worsened or showed no improvement at any point
during the treatment cycle. Toxicity variables were graded
according to the National Comprehensive Cancer Network
(NCCN) Common Terminology Criteria for Adverse Events
(CTCAE) guidelines [35-37]. Ejection fraction toxicity was
defined as detailed in Table S10 in Multimedia Appendix 1.
“Induction events” occurred during the initial treatment
hospitalization. The “Day15-55” disease assessment refers to
patient examinations, laboratory analyses, and bone marrow
biopsy (BMB) analyses performed closest to day 30 after the
initiation of treatment, but within days 15-55 to accommodate
variations in assessment timing. “Day 30 readmission events”
were defined as clinical events that occurred at least one day
after a patient’s discharge from the initial treatment
hospitalization and at least one day before the “Day15-55” BMB.

Statistical Learning
Structured and unstructured electronic medical record data were
integrated into a heme data mart on the Google Cloud Platform
(Alphabet Inc.), as previously described [10]. Descriptive
summary statistics of confounders were provided for both 7+3
and ven/aza treatments. Systematic differences between
treatments were compared using the Mann-Whitney U test,
Fisher exact test (for small sample sizes), chi-square test, and
standardized mean differences (SMDs). Kaplan-Meier analyses
were performed for OS with 95% CIs, assuming right censoring.
P values for testing the equality of survival curves were reported
using log-rank (LR), Tarone-Ware (TW), and
Fleming-Harrington (FH) methods. All hypotheses were 2-sided.
Cumulative incidence functions (CIFs) for hazards were reported
for toxicity along with 95% CIs, LR-based P values, and median
time to reach the worst toxicity grading from baseline. Multistate
survival analyses were conducted using follow-up BMB
responses. Occupation probabilities of disease states were
estimated using the Aalen-Johansen estimation technique
[38-40]. Transition probabilities for moving from one disease
state to another over time were estimated assuming a Markov
process, with standard errors reported using bootstrap methods
across 300 runs [41]. Multivariable Cox proportional hazards
(Cox-PH) models with a ridge penalty (ie, L2 norm penalty)
were fitted to adjust for multicollinearity, and estimates of
adjusted hazard ratios (aHRs) were reported [42]. Before fitting
multivariable models, numeric variables were categorized based

on clinically meaningful thresholds to enhance interpretability.
Noise variables were filtered out using a univariate approach
based on accelerated failure time (AFT) models. Tuning
parameters for the ridge penalty were selected using the 10-fold
cross-validation (CV) approach. Bias-corrected 95% CIs for
aHRs were constructed using the fractional random weight
bootstrap method with 2000 runs, where weights were computed
from a univariate Dirichlet distribution [43].

Development and Validation of Prognosis Models
The steps for training and evaluating ML models are depicted
in Figures 1 and 2. The process consists of 2 stages. First,
internal validation based on CV (steps 1-8) was conducted to
select the appropriate ML model for each treatment separately.
Second, subject-specific OS predictions, conditional on observed
covariates, and the corresponding uncertainty quantification
were performed using the selected treatment-specific ML models
(steps 10-11). A total of 17 different models ranging from
statistical learning-, ML-, and deep learning (DL)–based survival
models were used to assess long-term outcomes. These included
ensemble-based methods such as the random survival forest
(RSF) [44], survival forest with bagging, and conditional
inference survival forest [45], as well as Cox-PH models with
boosting, penalized Cox-PH models, and parametric AFT
models [46] with exponential, Weibull, and log-logistic error
structures. These models generated OS probabilities by
leveraging over 114 features, as highlighted in Table S12 in
Multimedia Appendix 1. The prognostic variable list was further
enhanced by creating binary variables based on the first and
fifth quintiles of numeric laboratory variables. Regularization
penalties [42,47-50] were applied to reduce the risk of
overfitting. The penalty terms included ridge, LASSO,
elastic-net (eNet), smoothly clipped absolute deviation (SCAD),
minimax concave penalty (MCP), adaptive SCAD, adaptive
MCP, adaptive eNet, adaptive MCP with L2 norm penalty
(mNet), and adaptive SCAD with L2 norm penalty (sNet) [47].
Adaptive models were fitted in 2 stages: in the first stage,
models were fitted with ridge penalties, and in the second stage,
models were refitted with covariate weights calculated as the
reciprocal of parameter estimates from the first stage.
Additionally, DL-based survival models (Deep-Surv [51],
Deep-LogHaz [52], and Deep-Hit [53]) with 2 hidden layers
exploiting neural network structures were used. Tuning
parameters for the ensemble-based approaches and DL models
were selected using a combination of grid search and CV. For
Cox-PH models, regularization penalties were selected using
10-fold CV. Parametric AFT models were fitted with a reduced
set of variables. To minimize dimensionality and avoid
collinearity in AFT models, a univariate filtering approach was
applied, where only variables with Bonferroni-corrected P
values below a prespecified threshold of 0.20 were included in
the final multivariable AFT models. For additional technical
details, please refer to Multimedia Appendix 1.
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Figure 1. ML architecture. Notation and description of 11 steps for the development of ML models, optimum model selection, validation, prediction,
and uncertainty quantification for a newly diagnosed patient with AML. AML: acute myeloid leukemia; AUC: area under the curve.

Internal validation was conducted using leave-one-out
cross-validation, focusing on several metrics: dynamic area
under the curve (AUC) of cumulative case dynamic control of
receiver operative characteristics (ROC) curves (cAUC),
incident case dynamic control ROC (iAUC) curves, integrated
Brier scores, and time-dependent concordance (C) index and
Brier score at 1-year survival (denoted by Ct and Briert,
respectively). The median (M) of cAUCs and iAUCs over event
times within 2 years were reported. The model demonstrating
the best numerical performance during the internal validation
step was retrained using the full data set with appropriately
selected tuning parameters. These models were then further

evaluated on 2 independent validation sets: 1 for each treatment
arm (7+3, n1=14; ven/aza, n2=30 patients with AML) treated at
the University of Colorado Hospital. Adversarial validation,
utilizing a generalized linear model with a logit link function,
was used to assess potential data drift between the training and
validation sets. SMDs were computed, and the predictive
performance of the models on the validation sets was reported.
For out-of-sample patients, predicted probabilities were reported
along with 95% percentile-based confidence bands, derived
from 300 nonparametric bootstrap runs. As the primary aim of
the study was to develop treatment-specific prognostic models,
we did not apply multiple testing corrections for type I errors.
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Figure 2. The processes for development of models, optimum model selection, validation, prediction, and uncertainty quantification for a newly
diagnosed patient with AML. AML: acute myeloid leukemia; ML: machine learning.

Results

Statistical Learning–Based Comparison of Ven/Aza
and 7+3 During the First 30 Days of Treatment
Summary statistics for the 7+3 and ven/aza cohorts are presented
in Tables S1-S5 in Multimedia Appendix 1. Ven/aza patients
were older (median age 72 years, IQR 66-78 years; range 22-90
years) and had more comorbidities and high-risk AML features
compared with 7+3 patients (median age 53 years, IQR 41-59
years; range 20-75 years), as previously described [54]. The
ven/aza cohort had a higher prevalence of patients with an
Eastern Cooperative Oncology Group score of 2 (15/59, 25%)
compared with the 7+3 cohort (1/31, 3%). Various diagnostic
criteria, including demographic features, comorbidities,

laboratory values, and AML pathology characteristics, were
associated with OS for both the ven/aza cohort (Figure S2 in
Multimedia Appendix 1) and the 7+3 cohort (Figure S4 in
Multimedia Appendix 1, “Diagnostic criteria”), consistent with
findings described previously [10]. Specific covariates showing
notable negative associations (aHR>1) for the ven/aza cohort
included prior myelodysplastic syndrome (aHR 1.09, 95% CI
1.03-1.16), prior coagulopathy (aHR 1.12, 95% CI 1.05-1.20),
abnormal white blood cell (WBC) count (aHR 1.05, 95% CI
1.00-1.10), blasts >20% (aHR 1.13, 95% CI 1.06-1.22),
abnormal platelet count (aHR 1.09, 95% CI 1.04-1.14), elevated
uric acid (aHR 1.10, 95% CI 1.03-1.18), high lactate
dehydrogenase (aHR 1.14, 95% CI 1.09-1.19), poor cytogenetic
risk (aHR 1.12, 95% CI 1.07-1.17), flow cytometry–based CD7
expression (aHR 1.21, 95% CI 1.14-1.28), CD34 expression
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(aHR 1.06, 95% CI 1.01-1.11), CD38 expression (aHR 1.08,
95% CI 1.02-1.14), and CD11b expression (aHR 1.07, 95% CI
1.01-1.12). Multivariable analyses for the 7+3 cohort revealed
similar effects in terms of direction for abnormal WBC, platelet
count, uric acid, creatinine, lactate dehydrogenase, poor
cytogenetic risk, myeloperoxidase (MPO), and isocitrate
dehydrogenase 2 (IDH2). However, more pronounced adverse
effects were observed for the ELN-2017–based adverse risk
subgroup (aHR 1.06, 95% CI 1.01-1.12), EGR1 mutation (aHR
1.14, 95% CI 1.07-1.22), and runt-related transcription factor
(RUNX; aHR 1.07, 95% CI 1.01-1.13). For more details, see
Figures S2 and S4 in Multimedia Appendix 1. The direction of
effects was reversed for CBFB and NPM1 between the ven/aza
and 7+3 treatment cohorts (Table S13 in Multimedia Appendix
1). Variables indicating genetic abnormalities are detailed in
Table S11 in Multimedia Appendix 1.

To determine whether features occurring after diagnosis and
the initiation of treatment influenced long-term outcomes, we
evaluated the associations between OS and factors such as
toxicities, hospital events, transfusions, and short-term disease
responses for both treatments separately. A summary of CTCAE
toxicities, transfusions, and hospital events, including intensive
care unit (ICU) transfers and readmission instances for the 2
treatment cohorts, is provided in Table S2 in Multimedia
Appendix 1.

For toxicities occurring after the initiation of treatment, grade
≥3 anemia (aHR 1.12, 95% CI 1.05-1.18) and grade ≥4
thrombocytopenia (aHR 1.11, 95% CI 1.06-1.16) were
associated with worse OS in the ven/aza group, as observed in
both multivariable and univariate analyses (Figure 3, “Toxicity
within the first 30 days of treatment”; Figure S3 in Multimedia
Appendix 1). Elevated aspartate aminotransferase was also
linked to worse OS (aHR 1.20, 95% CI 1.12-1.28) in the ven/aza
group (Figure 3), but this association was not found in the 7+3
group, according to both univariate and multivariable analyses
(Figures S4 and 5A in Multimedia Appendix 1). Creatinine
grade ≥2 in the first 30 days of treatment was associated with
worse OS in the 7+3 group, with an aHR of 1.10 (95% CI
1.01-1.20), as seen in both multivariable (Figure S4 in
Multimedia Appendix 1, “Toxicity within the first 30 days of
treatment start”) and univariate analyses (Figure S5B in
Multimedia Appendix 1). By contrast, this association appeared
weaker in the ven/aza group (Figure 3, “Toxicity within the first
30 days of treatment start”; Figure S5B in Multimedia Appendix
1). Despite this, worse OS was linked to chronic kidney disease
(CKD) grade ≥3 in the ven/aza group, with a multivariable
model–based aHR of 1.10 (95% CI 1.00-1.21; Figure 3,
“Toxicity within the first 30 days of treatment start”). A similar
trend was observed in the 7+3 group (Figure S4 in Multimedia
Appendix 1, “Toxicity within the first 30 days of treatment
start”). The kinetics of developing CKD differed significantly
between ven/aza and 7+3 treatments (Figure S5C in Multimedia
Appendix 1). In the ven/aza cohort, CKD was present at
diagnosis or developed quickly, with a CIF of approximately
68% at 50 days. By contrast, CKD developed more gradually
within the 7+3 cohort, showing a CIF of about 28% at 50 days.
There was a trend toward worse outcomes associated with

developing ejection fraction toxicity of grade ≥1 for the ven/aza
group, although the patient numbers were small (Figure 3,
“Toxicity within the first 30 days of treatment start”). For the
7+3 group, no significant association was found between
ejection fraction grade ≥1 and OS (aHR 1.02, 95% CI 0.95-1.09;
Figure S4 in Multimedia Appendix 1, “Toxicity within the first
30 days of treatment start”). However, both treatment groups
developed progressively higher proportions of patients with
ejection fraction toxicity grade >1 during the first 30 days of
treatment and beyond, at roughly equal rates (Figure S5D in
Multimedia Appendix 1). Febrile neutropenia, a common
complication of AML therapy, did not show a clear association
with OS in either treatment cohort. The aHRs were 1.01 (95%
CI 0.96-1.06) for the ven/aza group and 1.02 (95% CI 0.95-1.09)
for the 7+3 cohort, indicating no significant effect either by
multivariable analysis (Figure 3, “Toxicity within the first 30
days of treatment start” and Figure S4 in Multimedia Appendix
1, “Toxicity within the first 30 days of treatment start”), or by
univariate analysis (Figure S5E in Multimedia Appendix 1).
Interestingly, for the 7+3 regimen, grade ≥4 neutrophils (CIF
~100% at 50 days) and grade ≥3 febrile neutropenia (CIF ~75%
at 50 days) occurred at high levels. By contrast, for the ven/aza
cohort, there was a much lower rate of febrile neutropenia (CIF
~25% at 50 days) over time, despite a nearly universal incidence
of neurophils (Figure S5F in Multimedia Appendix 1).

For transfusions occurring after the initiation of treatment,
Kaplan-Meier analysis revealed that a higher number of platelet
and red blood cell transfusions were associated with poorer
outcomes in the 7+3 group. This association was evident in both
univariate (Figure S5G and S5H in Multimedia Appendix 1)
and multivariable analyses (Figure S4 in Multimedia Appendix
1, “Toxicity within the first 30 days of treatment start” and
Figure 3, “Toxicity within the first 30 days of treatment start”).
Specifically, in the 7+3 cohort, the corresponding aHR indicated
negative association with more than 5 platelet transfusions (aHR
1.11, 95% CI 1.06-1.18). This association was less pronounced
in the ven/aza group. For hospital events occurring after the
initiation of treatment, ICU transfer during the induction period
was a particularly poor prognostic feature for patients receiving
the 7+3 treatment, with an aHR of 1.18 (95% CI 1.10-1.28)
indicating worse outcomes (Figure S4 in Multimedia Appendix
1, “Events during initial admission,” and Figure S5I in
Multimedia Appendix 1). By contrast, there was no significant
association between ICU transfer following ven/aza treatment
and OS during the initial admission (Figure 3, “Events during
initial admission”). However, if a patient was discharged and
then readmitted to the hospital within the first month of
treatment, ICU admission during the readmission was a poor
prognostic feature for those treated with ven/aza, with an aHR
of 1.24 (95% CI 1.12-1.37; Figure 3, “events after discharge”).
For the 7+3 group, initial admissions lasting more than 35 days
were associated with worse outcomes (aHR 1.11, 95% CI
1.04-1.18; Figure S4 in Multimedia Appendix 1, “Events during
initial admission”). Similarly, for the ven/aza cohort, admissions
lasting more than 10 days were associated with poorer outcomes
(aHR 1.06, 95% CI 1.02-1.11; Figure 3, “Events during initial
admission”).
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Figure 3. Adjusted hazard ratios (aHRs) for predictors of overall survival for the ven/aza cohort corresponding to events occurring during the first ~30
days of therapy. Reported are the aHRs (vertical tick) and bootstrap-based 95% CIs (horizontal line). “Reference features” correlating with a better
outcome are to the right and “Label features” with a better outcome are to the left. The number of patients who died relative to the subset of patients
with each feature is summarized at the far left. The table includes findings during the first 30 days and outcomes at the Day15-55 bone marrow biopsy
assessment at the bottom. Day15-55 is defined as the day (or days) between 15 and 55 days from the initiation of treatment when bone marrow biopsy,
blood test, and clinical evaluation are conducted to assess response. Different symbols for aHRs were used to differentiate the values between different
types of variables. ALT: alkaline phosphatase; ANC: absolute neutrophil count; AST: aspartate transaminase; CKD: chronic kidney disease; CR:
complete remission; CRi: complete remission with incomplete hematologic recovery; ICU: intensive care unit; LDH: lactate dehydrogenase; LOS:
length of stay; MLFS: morphologic leukemia-free state; RBC: red blood cell; SD: stable disease; ven/aza: venetoclax plus azacitidine; WBC: white
blood cell.

Next, associations between OS and patient assessments around
day 30 (ie, Day15-55) after treatment initiation were analyzed.
Tables S3-S5 in Multimedia Appendix 1 provide a summary of
follow-up patient laboratory values, biomarkers, and AML
responses assessed at Day15-55 for both ven/aza- and 7+3-treated
patients, respectively. At the Day15-55 assessment, the ven/aza
cohort exhibited lower levels of alanine aminotransferase,
aspartate aminotransferase, neutrophils, fibrinogen,
lymphocytes, and WBC compared with that of the 7+3 cohort,
with SMDs greater than 0.40 (Table S3 in Multimedia Appendix
1). Platelets and hemoglobin levels were also lower in the
ven/aza cohort at the Day15-55 assessment, but these differences
were clinically inconsequential. Summary statistics for
AML-related responses are provided in Table S5 in Multimedia

Appendix 1. Notably, a lower proportion of ven/aza patients
achieved CR at Day15-55 (61/111, 55% for 7+3 vs 9/91, 10%
for ven/aza). Conversely, a higher proportion of ven/aza patients
were in CRi and MLFS compared with those treated with 7+3
(Figure S3 in Multimedia Appendix 1). Patients who achieved
CR or CRi at Day15-55 had better outcomes compared with those
who did not, with an LR-based P value of <.001 (Figure S3 in
Multimedia Appendix 1, top panel). This was also true for
patients who proceeded to receive an alloSCT, with an LR-based
P value of <.01 (Figure S3 in Multimedia Appendix 1, middle
panel). Ven/aza-treated patients who achieved MLFS at Day15-55

did not have worse OS compared with those who achieved CR,
with an aHR of 0.99 (95% CI 0.94-1.05). By contrast, MLFS
at this time point for patients treated with 7+3 was associated
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with worse outcomes than CR, with an aHR of 1.16 (95% CI
1.01-1.31). This difference was observed in both univariate
(Figure S3 in Multimedia Appendix 1, bottom panel) and
multivariable analyses (Figure 3, “Biomarker and labs associated
with ~30-day follow-up bone marrow biopsy”, and Figure S4
in Multimedia Appendix 1, “Biomarker and labs associated
with ~30-day follow-up bone marrow biopsy”). Findings of
persistent leukemia in the marrow as detected by flow
cytometry, cytogenetics, or fluorescence in situ hybridization
were associated with worse outcomes for both treatment groups
according to multivariable analysis (Figure S4 in Multimedia
Appendix 1, “Biomarker and labs associated with ~30-day
follow-up bone marrow biopsy,” and Figure 3, “Biomarker and
labs associated with ~30-day follow-up bone marrow biopsy”).
Summary statistics for genetics and phenotypic features are
provided in Table S4 in Multimedia Appendix 1. Specific
posttreatment covariates in the ven/aza cohort demonstrated
substantial negative associations, with aHRs exceeding 1,
including CD117 (aHR 1.07, 95% CI 1.03-1.12), CD11B (aHR
1.07, 95% CI 1.00-1.14), CD64 (aHR 1.16, 95% CI 1.09-1.23),

7 centromere (aHR 1.12, 95% CI 1.04-1.20), and EGR1 (aHR
1.14, 95% CI 1.05-1.23; Figure 3). Similarly, for the 7+3
patients’ cohort, posttreatment covariates demonstrated inverse
associations with OS, with aHRs exceeding 1. Significant
negative associations were observed for cytogenetic poor risk
(aHR 1.20, 95% CI 1.10-1.31), indeterminant risk (aHR 1.10,
95% CI 1.03-1.17), 8 centromere (aHR 1.22, 95% CI 1.11-1.35),
EGR1 (aHR 1.14, 95% CI 1.06-1.22), and FLT3 (aHR 1.22,
95% CI 1.10-1.34; Figure S4 in Multimedia Appendix 1).

For both treatments, the presence of >20% bone marrow blasts
and >5% bone marrow blasts at the Day15-55 time point were
associated with very poor OS by univariate analysis (Figure 4).
The corresponding aHRs of >20% blasts were 1.17 (95% CI
1.11-1.24) for the patients treated with ven/aza and 1.11 (95%
CI 1.04-1.20) for the patients treated with 7+3. These findings
highlight that early toxicities, treatment events, and short-term
responses occurring within the first month after treatment
initiation are associated with OS for both 7+3 and ven/aza.
However, the impact and relevance of these features vary
between the 2 treatment regimens.

Figure 4. Univariate analysis of blasts recorded at Day15-55 response assessment and long-term outcomes (7+3 left, ven/aza right). (A) >5% blasts and
outcomes and (B) >20% blasts and outcomes. As described in the "Methods" section, Day15-55 is defined as a bone marrow biopsy and other clinical
evaluation done within 15-55 days from the initiation of treatment and closest to day 30. P values are based on log-rank (LR), Tarone-Ware (TW), and
Fleming-Harington (FH) tests. ven/aza: venetoclax plus azacitidine.
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Prospective Machine Learning Predictors of OS
To translate the statistical associations between events and
responses occurring after the initiation of therapy into
predictions that could be potentially applied to individual
patients, we developed ML-based predictive models for OS
utilizing 17 different ML algorithms based on these baseline

and early posttreatment features (Table 1 and Table S12 in
Multimedia Appendix 1). The modeling steps are illustrated in
Figure 1, and an example of the model development process is
shown in Figure 2. Detailed information on feature engineering,
model specification, optimization, and final model selection is
provided in the section titled “Technical Details” in Multimedia
Appendix 1.

Table 1. List of machine learning models.

Method definitionModel abbreviation

Ensemble survival forest—randomRSF

Ensemble survival forest—baggingRSB

Cox regression with ridge penaltyCox-Ridge

Cox regression with lasso penaltyCox-LASSO

Cox regression with relaxed lasso penaltyCox-Relaxed

Cox regression with elastic net penaltyCox-Elastic

Cox regression with adaptive elastic net penaltyCox-adElastic

Cox regression with adaptive smoothly clipped absolute deviation (SCAD) penaltyCox-adSCAD

Cox regression with adaptive SCAD coupled with L2 penaltyCox-adSNET

Cox regression with adaptive minimax concave penalty (MCP)Cox-adMCP

Cox regression with adaptive MCP coupled with L2 penaltyCox-adMNET

Boosted Cox regressionCox-Boost

Accelerated failure time with exponential, Weibull, and log-logistic errorAFT

Conditional inference survival forestCISF

Cox regression with deep neural netDeep-Surv

Discrete-time survival estimates by log hazard with neural netDeep-LogHaz

Deep learning–based survival analysis relaxing distributional assumptionsDeep-Hit

Among all the models, Cox-Boost (Boosted Cox regression)
and RSF achieved median cAUCs of 0.85 (90% CI 0.78-0.88)
and 0.80 (90% CI 0.76-0.84) for the ven/aza and 7+3 cohorts,
respectively (Tables 2 and 3). In an independent validation set
consisting of 16 7+3 and 30 ven/aza patients, median cAUCs
of 0.71 and 0.68 were observed for the ven/aza and 7+3 cohorts,
respectively (Table 4). DL models resulted in less optimal
performance, primarily due to the small sample size and their
susceptibility to noise variables. A comparative analysis
highlighting the drift between the training and validation cohorts
was conducted, with details provided in Tables S6-S9 in
Multimedia Appendix 1. These tables cover laboratory values
(Table S6 in Multimedia Appendix 1), phenotypic features
(Table S7 in Multimedia Appendix 1), genetic biomarkers (Table
S8 in Multimedia Appendix 1), and clinical events (Table S9
in Multimedia Appendix 1). For a test patient, the selected ML
models were used to generate patient-specific survival
probabilities. Figure 5 illustrates the features (top panel) and

predicted survival (bottom panel) probabilities for a
representative patient randomly selected from the independent
validation set. Similarly, subject-specific analyses were
conducted for 2 additional patients randomly selected from the
internal validation cohorts: 1 treated with ven/aza (Figure S6
in Multimedia Appendix 1) and 1 treated with 7+3 (Figure S7
in Multimedia Appendix 1). The selected models were retrained
with 120 7+3 and 100 ven/aza patients for the ven/aza test
subject and with 119 7+3 and 101 ven/aza patients for the 7+3
test subject. Although exploratory and limited by sample size,
these analyses illustrate that ML predictors of OS can potentially
be developed based on clinical events, early disease responses,
and biomarkers for both ven/aza and 7+3 treatments. However,
as with the statistical analyses, the models that perform
optimally are likely to vary between ven/aza and 7+3 treatments.
Therefore, they should be developed and validated on a
treatment-specific basis.
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Table 2. Machine learning models of overall survival for ven/aza-treated patients based on events occurring in the first 30 days of treatment and the

Day15-55 follow-up assessment.a

iBrierfBriert
fCt

d
Median iAUCe (5th-95th)dMedian cAUCc (5th-95th)dOverall survival (2 years) prognostic modelsb

0.170.200.720.68 (0.66-0.76)0.79 (0.71-0.86)RSF

0.190.230.670.61 (0.60-0.63)0.73 (0.64-0.82)RSB

0.170.200.720.66 (0.62-0.75)0.82 (0.79-0.89)Cox-Ridge

0.160.200.730.69 (0.60-0.72)0.85 (0.78-0.89)Cox-LASSO

0.170.200.720.61 (0.59-0.68)0.83 (0.77-0.88)Cox-Relaxed

0.170.200.720.63 (0.60-0.70)0.83 (0.78-0.86)Cox-Elastic

0.190.240.660.64 (0.60-0.72)0.80 (0.76-0.89)Cox-adElastic

0.230.290.520.52 (0.52-0.53)0.62 (0.58-0.72)Cox-adSCAD

0.190.230.660.65 (0.62-0.69)0.78 (0.73-0.85)Cox-adSNET

0.220.260.550.55 (0.54-0.56)0.62 (0.51-0.66)Cox-adMCP

0.200.230.660.65 (0.62-0.69)0.78 (0.73-0.85)Cox-adMNET

0.160.190.760.66 (0.61-0.74)0.85 (0.78-0.88)Cox-Boostg

0.160.190.730.62 (0.60-0.64)≤0.50AFT-Exponential

0.170.220.720.65 (0.64-0.66)≤0.50AFT-Weibull

0.170.210.750.65 (0.64-0.66)≤0.50AFT-log-logistic

0.210.220.580.64 (0.61-0.65)≤0.50CISF

0.440.250.460.52 (0.52-0.53)≤0.50Deep-Surv

0.340.320.380.52 (0.51-0.52)0.52 (≤0.50-0.55)Deep-Hit

0.740.430.460.53 (0.53-0.54)≤0.50Deep-LogHaz

aTime-dependent AUCs (ie, median cAUC and iAUC), time-dependent concordance (C) index and Brier score at 1 year, and integrated Brier score
were reported. As described in the “Methods” section, Day15-55 is defined as a bone marrow biopsy and other clinical evaluation done within 15-55
days from the initiation of treatment.
bSee Table 1 for models and method definitions.
ccAUC: cumulative case dynamic control of receiver operative characteristics.
dThe higher value (ie, close to 1) means better numerical performance.
eiAUC: incident case dynamic control of receiver operative characteristics.
fThe lower value (ie, close to 0) means better numerical performance.
gThe selected final model for ven/aza.

JMIR Cancer 2024 | vol. 10 | e54740 | p. 10https://cancer.jmir.org/2024/1/e54740
(page number not for citation purposes)

Islam et alJMIR CANCER

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Machine learning models of overall survival for 7+3-treated patients based on events occurring in the first 30 days of treatment and the

Day15-55 follow-up assessment.a

iBrierfBriert
fCt

d
Median iAUCe (5th-95th)dMedian cAUCc (5th-95th)dOverall survival (2 years) prognostic modelsb

0.160.120.740.71 (0.70-0.73)0.80 (0.76-0.84)RSFg

0.150.130.730.71 (0.71-0.72)0.78 (0.75-0.84)RSB

0.170.110.710.70 (0.69-0.73)0.80 (0.75-0.86)Cox-Ridge

0.180.130.650.64 (0.63-0.65)0.71 (0.67-0.83)Cox-LASSO

0.190.130.650.64 (0.63-0.65)0.68 (0.61-0.73)Cox-Relaxed

0.180.120.670.65 (0.65-0.66)0.73 (0.69-0.83)Cox-Elastic

0.170.130.700.68 (0.67-0.68)0.76 (0.70-0.79)Cox-adElastic

0.180.140.680.66 (0.66-0.67)0.70 (0.44-0.73)Cox-adSCAD

0.170.130.680.66 (0.66-0.67)0.71 (0.64-0.72)Cox-adSNET

0.180.130.640.62 (0.61-0.62)0.61 (0.47-0.65)Cox-adMCP

0.170.130.680.66 (0.66-0.67)0.71 (0.65-0.73)Cox-adMNET

0.180.130.640.63 (0.63-0.64)0.70 (0.61-0.79)Cox-Boost

0.200.130.600.51 (0.50-0.51)≤0.50AFT-Exponential

0.200.140.570.53 (0.53-0.54)≤0.50AFT-Weibull

0.200.140.600.57 (0.56-0.57)≤0.50AFT-log-logistic

0.230.130.610.63 (0.62-0.64)≤0.50CISF

0.440.150.390.58 (0.58-0.59)≤0.50Deep-Surv

0.590.140.53≤0.500.55 (≤0.50-0.64)Deep-Hit

≥1.000.480.450.61(0.60,0.61)≤0.50Deep-LogHaz

aTime-dependent AUCs (ie, median cAUC and iAUC), time-dependent concordance (C) index and Brier score at 1 year, and integrated Brier score
were reported. As described in the “Methods” section, Day15-55 is defined as a bone marrow biopsy and other clinical evaluation done within 15-55
days from the initiation of treatment.
bSee Table 1 for models and method definitions.
ccAUC: cumulative case dynamic control of receiver operative characteristics.
dThe higher value (ie, close to 1) means better numerical performance.
eiAUC: incident case dynamic control of receiver operative characteristics.
fThe lower value (ie, close to 0) means better numerical performance.
gSelected model for 7+3.

Table 4. Numerical performances of the chosen machine learning models for ven/azaa and 7+3 on independent validation cohorts with respect to overall
survival (≤2 years).

iBriereBriert
eCt

b
Median iAUCb,dMedian cAUCb,cMachine learning modelsTreatment

0.210.190.660.690.71RSFf7+3 (n=14)

0.230.290.660.640.68Cox-Boostfven/aza (n=30)

aven/aza: venetoclax plus azacitidine.
bThe higher value (ie, close to 1) means better numerical performance.
ccAUC: cumulative case dynamic control of receiver operative characteristics.
diAUC: incident case dynamic control of receiver operative characteristics.
eThe lower value (ie, close to 0) means better numerical performance.
fSee Table 1 for models and method definitions.
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Figure 5. Representative machine learning (ML)-based predictions for a patient chosen randomly from the validation cohort treated with ven/aza.
Actual patient values are in the top boxes and the predicted overall survival probabilities along with 95% confidence bands based on the optimal ML
models are depicted at the bottom. ALT: alkaline phosphatase; AML: acute myeloid leukemia; ANC: absolute neutrophil count; AST: aspartate
transaminase; CKD: chronic kidney disease; CTCAE: Common Terminology Criteria for Adverse Events; FUP: follow-up; ICU: intensive care unit;
LDH: lactate dehydrogenase; MDS: myelodysplastic syndrome; RBC: red blood cell; TX: treatment; ven/aza: venetoclax plus azacitidine; WBC: white
blood cell.

Association Between Events Occurring During the
First Year of Therapy and Overall Survival
As treatment events and responses in AML can evolve beyond
the first month of treatment, we investigated associations
between later disease responses and OS. Initially, we examined
the association between the best response after the treatment

initiation and long-term OS. Among patients treated with 7+3,
achieving CR as the best response correlated with a 4-year OS
rate of approximately 60%. Conversely, achieving CRi, MLFS,
or being nonresponsive (refractory) as the best responses
correlated with an OS rate of approximately 25% or less. An
LR–based P value <.001 indicated significant differences
between survival curves (Figure 6A). In the ven/aza-treated
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cohort, both CR and CRi were similarly associated with OS,
whereas MLFS and nonresponses correlated with lower OS
(Figure 6B). It is important to note that Kaplan-Meier survival
curves might be influenced by alloSCT. For instance, out of 21

refractory 7+3 patients, 10 (48%) underwent alloSCT,
potentially leading to an overestimation of the corresponding
survival curve. By contrast, only 3 (18%) out of 17 refractory
ven/aza patients underwent alloSCT.

Figure 6. Univariate Kaplan-Meier analysis of best response during the first 180 days' assessment and long-term outcomes with (A) 7+3 and (B)
ven/aza.P values are based on log-rank (LR), Tarone-Ware (TW), and Fleming-Harington (FH) tests. CR: complete remission; CRi: complete remission
with incomplete hematologic recovery; MLFS: morphologic leukemia-free state; ven/aza: venetoclax plus azacitidine.

Next, we examined the kinetics of achieving the best response
in the 2 treatment groups. The pattern of reaching the best
responses differed between the 7+3 and ven/aza groups (Figure

7), as did the overall frequencies of various treatment response
outcomes (Figure S8 in Multimedia Appendix 1). At the
population level, the 7+3 cohort quickly reached a relatively
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stable state by day 30 (Figure 7A). By contrast, the ven/aza
cohort showed a continual evolution with conversions from CRi
and MLFS to either CR or death (Figure 7B). The disease-state
transition probabilities between days 30 and 365 also differed
significantly between 7+3 (Figure 8A) and ven/aza (Figure 8B).
Achieving CR (0.28; SE 0.05), CRi (0.37; SE 0.06), or MLFS
(0.42; SE 0.07) around day 30 after ven/aza treatment showed
similar probabilities of transitioning to mortality within a year.
By contrast, CR (0.13; SE 0.03) and CRi (0.20; SE 0.05) had
comparable transitioning rates to mortality for 7+3. Ven/aza
patients with stable disease and progressive disease around day
30 had poorer OS, with 1-year mortality rates of 0.61 (SE 0.08)
and 0.75 (SE 0.18), respectively. These observations contrast
with that of 7+3, presumably because 7+3 patients were
generally fit enough to undergo additional therapies aimed at
disease control during this period. Similar observations were
noted in disease-state transition probabilities between days

90-365 (Figure S9 in Multimedia Appendix 1) and days 180-365
(Figure S10 in Multimedia Appendix 1). Unlike the 7+3
subgroup, patients treated with ven/aza who achieved any
disease state around 180 days had a higher likelihood of
transitioning to mortality, with the highest probability observed
for the relapse state (0.73; SE 0.16 for ven/aza and 0.54; SE
0.33 for 7+3). Specifically, patients in the MLFS disease state
around 180 days transitioned more rapidly to mortality with
ven/aza (0.37; SE 0.08) compared with 7+3 (0.14; SE 0.07;
refer to Figure S10 in Multimedia Appendix 1). These results
further confirm that associations with short- and long-term
outcomes differ following ven/aza and 7+3 treatments. The
kinetics of responses with ven/aza are notably more dynamic
and occur over different time frames compared with those with
7+3. These observations underscore the necessity for distinct
response criteria, maintenance strategies, and timing of
measurements tailored to each therapy.

Figure 7. Overall trends in disease state changes during first year of treatment for (A) 7+3 and (B) ven/aza. CR: complete remission; CRi: complete
remission with incomplete hematologic recovery; MLFS: morphologic leukemia-free state; PD: progressive disease; SD: stable disease; ven/aza:
venetoclax plus azacitidine.
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Figure 8. Probabilities of transitions from treatment responses (y-axis) achieved by day 30 of treatment to states (x-axis) within 365 days following
treatment for (A) 7+3-treated patients and (B) ven/aza-treated patients. The state transition probabilities are on the left panels and SEs are on the right.
CR: complete remission; CRi: complete remission with incomplete hematologic recovery; MLFS: morphologic leukemia-free state; PD: progressive
disease; SD: stable disease; ven/aza: venetoclax plus azacitidine.

Discussion

Principal Findings
The main findings of this study indicate that various clinical
events occurring during the first month of ven/aza treatment
correlate with OS, distinct from outcomes following the 7+3
treatment. Achieving CR/CRi or MLFS around day 30 (ie,
Day15-55) after ven/aza treatment has a similar long-term
prognostic impact, while failure to achieve MLFS around day
30 with 7+3 indicates poorer outcomes. We also identified
clinical features such as bone marrow blasts >5%, flow
cytometric and genetic detection of AML, and AML-related
cytogenetic factors at reassessment as having negative
prognostic impacts on OS. Based on these observations,
detection of persistent leukemia in the bone marrow around day
30 following ven/aza treatment suggests consideration of
alternative therapies. By contrast, achieving CR/CRi/MLFS
around day 30 with minimal evidence of persistent leukemia

following ven/aza is associated with improved OS, indicating
the benefit of continuing this treatment. However, we also found
that failure to achieve CR/CRi by approximately day 180 after
ven/aza initiation has negative implications for OS. This
suggests that alternative therapies should be considered if the
milestone of achieving CR/CRi by this time point is not met.

We also found that certain hospital events and toxicities
occurring after the initiation of ven/aza treatment have
prognostic implications, which differ from those seen with the
7+3 treatment. For instance, ICU admission during the initial
ven/aza treatment was not associated with worse outcomes,
whereas ICU transfer during the initial hospitalization for 7+3
was a poor prognostic factor. Additionally, grade ≥4
thrombocytopenia and grade ≥3 anemia were more pronounced
as poor prognostic indicators for ven/aza compared with 7+3.
The incidence of renal impairment was similar for both
treatments; however, elevated creatinine, proteinuria, and CKD
were associated with worse OS among patients treated with
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7+3, but less so among those treated with ven/aza. The
progression of grade ≥1 ejection fraction toxicity over time was
comparable between both treatment arms. While there is a
well-known association between anthracyclines in the 7+3
regimen and cardiac toxicity, such an association has not been
previously described for ven/aza. These associative findings,
albeit based on small sample sizes, may warrant further
investigation.

Prospective Predictive Models for AML Clinical
Decision Support
To translate the statistical associations between events and
outcomes following the initiation of AML therapy into
patient-specific prognostic models, we developed predictive
ML models independently for OS with ven/aza and 7+3
treatments. These models utilized baseline and early disease
responses, biomarkers, and clinical events. Several models
achieved relatively high AUCs of 0.80 and 0.85 in the internal
validation step. However, in the independent validation phase,
AUCs were lower at 0.71 and 0.68 for the 7+3 and ven/aza
cohorts, respectively. This predictive discrepancy may stem
from data drift, yet we tested the models to evaluate their
performance on nonhomogeneous data. Although not ideal, we
contend that such drifts are typical in real-world data sets.
Nevertheless, these findings illustrate the feasibility of
developing ML-based individual predictors using patient data
that evolve. This capability allows clinical decision-making to
adapt to individual changes in treatment side effects and
responses. This effort contributes to an expanding body of
research utilizing ML to predict outcomes in the treatment of
AML and other hematologic malignancies [55-58]. For instance,
Park et al [55] evaluated the prognostic performance of ELN
genetic risk stratification models using unsupervised ML
techniques and found suboptimal predictions for OS in older
patients with AML, indicating a need for new risk models in
this demographic. Karami et al [56] identified novel prognostic
factors for survival in patients with AML, incorporating
demographic and AML-specific features through ML
approaches. Shaikh et al [57] developed a novel risk
stratification model for patients with AML and
RUNX1-RUNX1T1 using supervised machine learning models.
This model assesses risk based on somatic mutations in Flt3,
NRAS, and other genes. Lastly, Eckardt et al [58] conducted a
review of various ML approaches for AML diagnosis, prognosis,
and risk stratification, emphasizing their evolving and potentially
impactful role in this specific disease area. To our knowledge,
no prior predictive ML-based survival models with uncertainty
quantification have been developed in the AML literature by
exploiting both patient- and event-specific long-term dynamic
features at this level of detail.

Limitations
Our study is limited by relatively small data sets, and our results
require validation on larger data sets from diverse centers
ensuring heterogeneity. Although we adjusted for high
collinearity among variables, missingness, and overfitting, these
issues need further careful consideration in larger external data
sets. Additionally, our single-center data set consists of half
real-world and half clinical trial data, which may potentially
bias the results compared with more diverse population-based
data sets. Lastly, any comparison between the 2 primary
treatments, ven/aza and 7+3, is influenced by differences in
patient demographics, comorbidities, and other inherent features.
Ven/aza is currently approved only for older and unfit patients,
whereas 7+3 is primarily used in younger and fitter patients.
Additionally, 24 out of 101 ven/aza patients (23.8%) underwent
at least one alloSCT after the initiation of treatment, whereas
79 out of 120 7+3 patients (65.8%) underwent at least one
alloSCT. Survival curves in AML are affected by alloSCT,
which can significantly impact OS and necessitate adjustments
and modifications in ML modeling, a direction we plan to
explore in future studies. Because of these complexities, the
extent and direction of association with OS for confounding
factors vary across the treatments we evaluated. However, our
primary objective was not to establish causal treatment
effectiveness by treating ven/aza as the treatment group and
7+3 as the control for which a classical propensity score–based
or weighted method is recommended to ensure balances in data
distributions between the 2 treatment arms. Instead, our primary
objective was to separately explore the variations in data to
assess whether treatment modifies the effects (ie, directions) of
confounders on OS. Therefore, we treated 7+3 and ven/aza as
effect modifiers and conducted “stratified” multivariable
analyses, creating subgroups of patients treated with 7+3 and
ven/aza [59]. This stratification approach minimizes the
variation attributed to treatment differences significantly, and
by accounting for the same set of potential confounders in both
models, it enhances the comparability of results.

Conclusions
Despite these considerations, our results have highlighted
significant clinical implications of posttreatment outcomes,
clinical events, and toxicities on long-term outcomes and
treatment decisions in AML, demonstrating differences between
ven/aza and 7+3. Additionally, these observations suggest strong
potential to develop ML-based predictive models which could
ultimately offer crucial ongoing clinical decision support for
patients and providers as toxicities, responses, and other events
evolve dynamically throughout treatment cycles.
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AFT: accelerated failure time
aHR: adjusted hazard ratio
alloSCT: allogeneic stem cell transplantation
AML: acute myeloid leukemia
AUC: area under the curve
BMB: bone marrow biopsy
C: concordance
cAUC: cumulative case dynamic control of receiver operative characteristics
CDS: clinical decision support
CIF: cumulative incidence function
CKD: chronic kidney disease
CR: complete remission
CRi: complete remission with incomplete hematologic recovery
CTCAE: Common Terminology Criteria for Adverse Events
CV: cross-validation
DL: deep learning
ELN: European Leukemia Net
eNet: elastic-net
iAUC: incident case dynamic control of receiver operative characteristics
ICU: intensive care unit
LOOCV: leave-one-out-cross-validation
M: median
MCP: minimax concave penalty
ML: machine learning
MLFS: morphologic leukemia-free state
MRD: minimal residual disease
NCCN: National Comprehensive Cancer Network
OS: overall survival
PD: progressive disease
PH: proportional hazard
RBC: red blood cell
ROC: receiver operative characteristic
RSF: random survival forest
RUNX: runt-related transcription factor
SCAD: smoothly clipped absolute deviation
ven/aza: venetoclax plus azacitidine
WBC: white blood cell
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