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Abstract

Background: Most patients diagnosed with breast cancer present with a node-negative disease. Sentinel lymph node biopsy
(SLNB) is routinely used for axillary staging, leaving patients with healthy axillary lymph nodes without therapeutic effects but
at risk of morbidities from the intervention. Numerous studies have developed nodal status prediction models for noninvasive
axillary staging using postoperative data or imaging features that are not part of the diagnostic workup. Lymphovascular invasion
(LVI) is a top-ranked predictor of nodal metastasis; however, its preoperative assessment is challenging.

Objective: This paper aimed to externally validate a multilayer perceptron (MLP) model for noninvasive lymph node staging
(NILS) in a large population-based cohort (n=18,633) and develop a new MLP in the same cohort. Data were extracted from the
Swedish National Quality Register for Breast Cancer (NKBC, 2014-2017), comprising only routinely and preoperatively available
documented clinicopathological variables. A secondary aim was to develop and validate an LVI MLP for imputation of missing
LVI status to increase the preoperative feasibility of the original NILS model.

Methods: Three nonoverlapping cohorts were used for model development and validation. A total of 4 MLPs for nodal status
and 1 LVI MLP were developed using 11 to 12 routinely available predictors. Three nodal status models were used to account
for the different availabilities of LVI status in the cohorts and external validation in NKBC. The fourth nodal status model was
developed for 80% (14,906/18,663) of NKBC cases and validated in the remaining 20% (3727/18,663). Three alternatives for
imputation of LVI status were compared. The discriminatory capacity was evaluated using the validation area under the receiver
operating characteristics curve (AUC) in 3 of the nodal status models. The clinical feasibility of the models was evaluated using
calibration and decision curve analyses.

Results: External validation of the original NILS model was performed in NKBC (AUC 0.699, 95% CI 0.690-0.708) with good
calibration and the potential of sparing 16% of patients with node-negative disease from SLNB. The LVI model was externally
validated (AUC 0.747, 95% CI 0.694-0.799) with good calibration but did not improve the discriminatory performance of the
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nodal status models. A new nodal status model was developed in NKBC without information on LVI (AUC 0.709, 95% CI:
0.688-0.729), with excellent calibration in the holdout internal validation cohort, resulting in the potential omission of 24% of
patients from unnecessary SLNBs.

Conclusions: The NILS model was externally validated in NKBC, where the imputation of LVI status did not improve the
model’s discriminatory performance. A new nodal status model demonstrated the feasibility of using register data comprising
only the variables available in the preoperative setting for NILS using machine learning. Future steps include ongoing preoperative
validation of the NILS model and extending the model with, for example, mammography images.

(JMIR Cancer 2023;9:e46474) doi: 10.2196/46474
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Introduction

Breast cancer is the most frequently diagnosed cancer
worldwide. Despite its generally favorable prognosis [1], the
focus on the quality of life for affected patients is becoming
increasingly important. For the last 2 decades, sentinel lymph
node biopsy (SLNB) has been the standard surgical procedure
for evaluating axillary status in patients with breast cancer and
clinically node-negative (cN0) status [2]. The SLNB procedure
causes less postoperative morbidity than axillary lymph node
dissection; however, it is still associated with lymphedema, arm
pain and numbness, and reduced quality of life [3]. Furthermore,
in 70% to 80% of cases [4], SLNB will prove negative, without
cancer cells in the sentinel lymph nodes, and surgical axillary
intervention will have no therapeutic benefit.

Multiple recent studies have presented prediction models for
noninvasive staging of axillary nodal (N) status with the
long-term aim of replacing SLNB for subgroups of patients
with breast cancer [5-17]. Only routinely and preoperatively
available data should be used for a feasible noninvasive
diagnosis of axillary N status aimed at clinical implementation.
A limitation of the published models is that they include
postoperative variables from surgical specimens, including
pathological tumor size [10,14], estrogen receptor (ER) status
[5,7,13,16], progesterone receptor (PR) status [5,7], human
epidermal growth factor receptor 2 (HER2) status [5,7,10,16],
proliferation index Ki67 value [5,7,13], Nottingham histological
grade (NHG) [5,7,8,12], histological type [5,7,8,12], and
lymphovascular invasion (LVI) [6,7,11].

ER, PR, HER2, and Ki67 showed moderate to very good
concordance between core needle biopsy (CNB) and surgical
specimens [18]. Therefore, these variables have potential as
preoperative predictors of lymph node status. Similarly, NHG
and histological type showed concordance rates of >70% [19]
and >80% [20], respectively, for the same comparison. However,
LVI is challenging to evaluate on preoperative CNB because
of the limited amount of tissue sample, and a high failure rate
of 30% has been reported [21]. Along with tumor size, LVI
status is the most important clinicopathological predictor of N
status [22]. Although preoperative evaluation of LVI remains
a challenge, an accurate preoperative assessment of LVI is
needed to predict the N status.

Imaging of the breast and axilla can be used to assess
preoperative tumor size and extract other features related to the
N status. Standard imaging modalities in the diagnostic workup
of breast cancer are mammography and ultrasound (US) of the
breast and axilla; therefore, data from these imaging modalities
can be obtained routinely. Several models have been developed
using US features [5,10,11,16,17]. However, US is operator
dependent; therefore, it is not reproducible, limiting its utility
in prediction models. In addition, prediction models using other
imaging modalities or combinations, such as US and magnetic
resonance imaging (MRI) [9], positron emission tomography
combined with US [13], MRI [14], contrast-enhanced spectral
mammography (CESM) [15], and US combined with computed
tomography [16], lack clinical feasibility.

Nomograms have been developed based on postoperative,
nonimaging, and pathological data. Li et al [8] showed an
internal validation area under the receiver operating
characteristic curve (AUC) of 0.718 (95% CI 0.714-0.723) when
predicting lymph node metastasis including tumor size, NHG,
and histological type. The discriminatory performance of the
Memorial Sloan-Kettering Cancer Center nomogram [22] for
the prediction of sentinel lymph node metastasis, developed
based on 3786 patients, decreased significantly from an AUC
of 0.75 in the internal validation to an AUC of 0.67 (95% CI
0.63-0.72) when externally validated in a Dutch population
(n=770) [23]. Furthermore, the Skåne University Hospital
nomogram [6], a logistic regression model based on 800 patients
in Lund, Sweden, aiming to predict negative sentinel lymph
nodes, had an internal validation AUC of 0.74 (95% CI
0.70-0.79). The nomogram was temporally (n=1318) and
geographically (n=1621) externally validated with an AUC of
0.75 (95% CI 0.70–0.81) and an AUC of 0.73 (95% CI
0.70–0.76), respectively [24].

In 2019, Dihge et al [7] predicted axillary N status in patients
with cN0 breast cancer using a multilayer perceptron (MLP)
model for noninvasive lymph node staging (NILS) based on 15
clinical and postoperative pathological predictors. The NILS
concept includes logistic regression and machine learning
models for noninvasive staging of the axilla, aiming at a web
interface implementation to be used in clinical practice. Similar
to previous N prediction models, pathological tumor size and
LVI were the top-ranked predictors in the original (MLP) NILS
model [7]. Training and internal cross-validation were performed
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on the same 800 patients as in the study by Dihge et al [6] and
provided a prediction of the disease-free axilla. In addition, the
possible clinical benefit of using the model to identify patients
who were least likely to benefit from SLNB was assessed.
Surgical axillary lymph node staging could have been avoided
in 27% of patients, given a false-negative rate (FNR) of 10%,
corresponding to the accepted FNR for SLNB [25]. Although
the benefit of replacing logistic regression with machine learning
in clinical prediction models is not specified [26], the MLP
model outperformed the multivariable logistic regression model,
given its discriminatory performance.

This study primarily aimed to externally validate the original
NILS model presented in 2019 [7] and develop a new N model
in a large population-based cohort of routinely collected data
from the Swedish National Quality Registry for Breast Cancer
(NKBC). In addition, it secondarily aimed to develop an LVI
model and assess how the overall predictive performance of the
N model was affected by applying the LVI model for missing
values. To the best of our knowledge, this is the first LVI model
to be incorporated into an N model. This study was conducted
in accordance with the Transparent Reporting of a multivariate
prediction model of Individual Prognosis Or Diagnosis
(TRIPOD) to develop and validate prediction models [27].

Methods

Study Population
Three data sets with nonoverlapping populations were used for
model development and evaluation. The inclusion criteria for
all 3 cohorts were female patients with invasive primary breast
cancer and cN0 axilla scheduled for primary surgical treatment,
with excision of the breast tumor by total mastectomy or partial
mastectomy and axillary staging by SLNB. In addition, the
exclusion criteria for the 3 cohorts were male sex, previous

ipsilateral breast or axillary surgery, bilateral cancer, previous
neoadjuvant therapy, ductal carcinoma in situ only, missing
pathological-anatomical diagnosis tumor size, tumor size >50
mm, a tumor growing into the chest wall or skin, metastatic
disease (stage 4 breast cancer), patients with clinically
node-positive disease, and missing or incongruent data for
axillary surgery or lymph node status.

The 3 data sets originated from different periods. Data set 1
(n=995) comprised consecutive patients diagnosed with primary
breast cancer at Skåne University Hospital Lund, Sweden,
between January 2009 and December 2012. Data were extracted
from the medical records and pathology reports, with a final
cohort size of 761 (Multimedia Appendix 1). For data set 1, a
quality assessment scheme was used to ensure accurate
histopathological reporting and internal quality control of the
retrieved data from the medical records. Data set 2 (n=23,264)
was a large population-based cohort of a breast cancer registry
for external validation and development of a new N model. It
consisted of patients with primary breast cancer from all breast
cancer treatment units in Sweden included in the NKBC registry
from 2014 to 2017, with a final cohort size of n=18,633 (Figure
1). Löfgren et al [28] examined the data quality of NKBC in
2019 and reported high validity and coverage of 99.9% between
2010 and 2014. Data set 3 (n=598) comprised consecutive
patients with primary breast cancer surgically treated in Malmö
or Helsingborg, Sweden, between 2019 and 2020, respectively.
Data were, similar to those of data set 1, extracted from medical
records and pathology reports. The final cohort size was 525
patients (Multimedia Appendix 2). The data extraction for cohort
III was validated and monitored by an independent researcher
according to a specific quality assurance protocol [29]. The
sample size calculation for validating the NILS concept has
been published previously [29].

Figure 1. Patient selection for cohort II. *Including records with the same information on age, mode of detection, hospital, and date of diagnosis but
with different laterality. **Note that 31 patients were excluded by 2 of the 6 criteria in this step. NKBC: Swedish National Quality Register for Breast
Cancer; PAD: pathological-anatomical diagnosis.
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Outcomes
The following 2 outcomes were assessed: pathological N status
(node-negative [N0] vs node-positive [N+] disease) and
pathological LVI status (LVI-positive vs LVI-negative disease).
Lymph node involvement was defined as metastatic infiltration
of >0.2 mm in the lymph nodes; therefore, patients with only
N micrometastasis were included in the study and categorized
as N+. LVI positivity was defined as the presence of tumor cells
within endothelium-lined lymphatic channels or blood vascular
vessels [30]. A board-certified specialist in clinical pathology
assessed both outcomes on surgical breast specimens according
to the national guidelines for pathology [30].

Data Availability and Preprocessing
The original NILS model [7] included the following variables
available preoperatively: age at diagnosis, BMI, tumor laterality,
mode of detection (mammographic screening or symptomatic
presentation), menopausal status, tumor localization (centrally
or 1 to 12 o’clock position), and variables assessed on surgical
breast specimens (ie, largest pathological tumor size, tumor
multifocality assessed by pathology, histological type, NHG,
LVI status, ER status, PR status, HER2 status, and Ki67 labeling
index). The inclusion of tumor characteristics and lymph node
status in the contralateral breast and axilla violated the
assumption of independent samples, and patients with bilateral
tumors were excluded (Figure 1). Although the information on
LVI status was missing in cohort II, a separate prediction model
for LVI status was developed in cohort I because of its
importance in predicting N status [7,22]. All variables were
defined and preprocessed as described by Dihge et al [7], except
for the histological type. In cohorts I and II, the histological
type was categorized into the following 3 groups: no special
type, lobular, and other or mixed. In cohort III, data on other or
mixed histological type were regrouped, and the mixed
histological type was set as missing.

Study Design
This was an observational diagnostic study. Because of the
absence of information on LVI status in cohort II, a total of 3

N models trained in cohort I (N-LVI_presentI, N-LVI_imputedI,

and N-LVI_absentI; Figure 2) were developed to externally
validate the original NILS model [7]. Each of the 3 models had
different access to values for the LVI status. When applicable,
missing data on the LVI status were imputed using an LVI

model (LVI model in Figure 2). The model N-LVI_presentI was
developed using only patients with a documented LVI status
(613/761, 80.6% patients in cohort I). For the model

N-LVI_imputedI, patients with missing values for LVI status
(148/761, 19.4% patients) had these predicted using the LVI
model, and the model was trained on all 761 patients in cohort

I. The model N-LVI_absentI was developed without access to
LVI status in all 761 patients in cohort I. The LVI model was
developed based on 613 patients in cohort I with a documented
LVI status.

The 3 available cohorts enabled us to externally validate the
original NILS model [7] and investigate the effect of imputed
LVI status values on N model predictions. Imputations by the

LVI model were further evaluated in the model N-LVI_presentI

(refer to the LVI Model Evaluation section). The considerably
larger size of cohort II also enabled the development of a new

N model (N-LVI_absentII; Figure 2) in a large population-based
cohort.

Cohort II was categorized into a training and a test data set of
80%/20% (14,906/3727) stratified by N status to compare the

performance of the model N-LVI_absentII with that of N models

N-LVI_presentI, N-LVI_imputedI, and N-LVI_absentI. The

model N-LVI_absentII was developed using the training data
set whereas the test data set was set aside for comparison with
the other developed N models.

Figure 2. Models developed and evaluated in the study. Three nodal (N) models were developed to account for the lack of data on lymphovascular
invasion (LVI) status in cohort II. The external validation was made in cohort II (Swedish National Quality Register for Breast Cancer; n=18,633). A
new N model was developed in the training cohort (n=14,906) of cohort II, and its performance was compared with that of the 3 other N models in the
test cohort (n=3727) of cohort II. An LVI model was developed to predict the LVI status for patients without documented LVI status in cohort I, and

the LVI model was externally validated in cohort III. In addition, different alternatives for LVI imputation were tested in the model N-LVI_presentI in
cohort III.
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Model Development and Selection
The process of training the LVI model and the 4 N models was
similar to that by Dihge et al [7] but with minor modifications
owing to different access to data, as presented in the Study
Population section, an ensemble MLP was developed for each
examined hyperparameter combination, and every network in
the ensemble was trained using 5-fold cross-validation, stratified
by the outcome distribution. The mean validation AUC of each
ensemble was compared to identify the hyperparameter
combination that yielded the highest validation AUC value.
One difference from the original model development was the
use of random search instead of grid search, where each learning
algorithm was assigned randomly selected hyperparameters,
given a range of values. This hyperparameter optimization
method is more efficient than iterating over all possible
hyperparameter combinations [31].

Missing Data
The 3 cohorts had between 1% and 2% missing values and 72%
to 90% complete-case patients (Multimedia Appendices 3-5).
Missing LVI status was assumed to be missing at random
conditional on the other predictors, and other values were
assumed to be missing completely at random. In the original
NILS model, missing data were handled using multiple random
imputation. In this study, missing data were imputed either by
multiple random imputation or by the LVI model. Although the
methodology used to develop the LVI model can be applied to
other variables with missing data, it was decided to be relevant
only for LVI because of its importance for the N prediction
models.

All cases with missing LVI status values were predicted using
the LVI model. During the development of the model

N-LVI_imputedI, the LVI model was used to predict the LVI
status of 148 patients lacking information on LVI status in
cohort I at the beginning of each fold in the 5-fold
cross-validation. For each training epoch, the LVI status was
set to positive or negative, given the probability of the
prediction. Missing values among other variables were imputed
using multiple random imputation, where a missing value was
randomly replaced by a value in the present data distribution
for the corresponding variable. This procedure was repeated at
the beginning of each training epoch.

LVI Model Evaluation
To evaluate the LVI model developed in cohort I, a total of 3
types of imputations of LVI status were compared with the
original values for LVI status in cohort III. The comparison was

made using the N status predicted by the N-LVI_presentI model.
Subsequently, the three types of imputation were (1) the
probability predicted using the LVI model; (2) the corresponding
category (LVI positive or LVI negative) given the probability
of the prediction; and (3) the corresponding category of the
prediction given a cutoff of 0.3, matching the distribution of
the LVI predictions in the internal cross-validation with that of
the development cohort.

The imputation option yielding the highest validation AUC for

N status, calculated as the mean of the N-LVI_presentI model’s

predictions over 25 imputed data sets, was chosen for the
imputation of the LVI status in cohort II. Calibration curves of
the observed versus mean predicted probabilities were used to
visualize the LVI model calibration.

N Model Evaluation
The N model validation AUC was calculated as the mean of
the AUCs over 25 data sets imputed for missing values, and the
LVI status was imputed by the LVI prediction model for each
data set when applicable. In addition, a secondary outcome for
the N models was the proportion of patients that could be
omitted from SLNB while maintaining the FNR at 10% (the
generally accepted FNR of SLNB [25]). The successful criteria
for developing an N model to identify potential candidates for
omitting SLNB in every fifth patient with cN0 breast cancer
were established in advance.

Model predictions were recalibrated to the prevalence in the
external validation cohort to account for the different N status
distributions of cohorts I and II [32]. In addition, calibration
curves of the observed versus mean predicted probabilities were
used to visualize the model calibration. Finally, decision curves
[33] were analyzed to examine the standardized clinical benefit
[34] of the N models, where the threshold probabilities were
set to the range of the acceptable level for the FNR (0%-10%).

Software and Hardware
All parts of the study were conducted using Python (version
3.9.7; Python Software Foundation) [35] and TensorFlow
(version 2.6.0; Google Brain Team) [36], with a computer
equipped with an Intel Core i7-8700K CPU at 3.70 GHz and 2
GeForce RTX 2080 GPUs.

Ethical Considerations
The Regional Ethics Committee at Lund University, Sweden,
approved cohort I for the study (LU 2013/340), and ethics
approval was obtained for the use of an opt-out methodology.
Cohorts II and III received approval from the Swedish Ethical
Review Authority under reference numbers 2019-02139 and
2021-00174, respectively, for the study. Written informed
consent for participation was not required for this
noninterventional study in accordance with the national
legislation and institutional requirements. All patients included
in the study were given the option to opt out. The data sets
generated and analyzed from anonymized data were separated
from personal identifiers. Data are not publicly available because
of privacy and ethical restrictions, and information is not made
available or disclosed to unauthorized individuals, entities, or
processes.

Results

Study Population and Data Availability
Access to variables differed between the large population-based
register (cohort II; Table 1) and the data obtained from medical
records in cohorts I and III (Multimedia Appendices 6 and 7,
respectively). BMI and tumor localization data were not
routinely registered in the NKBC, and these 2 variables were
excluded.
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Table 1. Patient and tumor characteristics for cohort II (n=18,633).

Node positive (n=3804)Node negative (n=14,829)All patients

63 (23-94)65 (22-95)65 (22-95)Age (years), median (range)

Menopausal status, n (%)

821 (22.9)2515 (18.04)3336 (19)Premenopausal

2767 (77.12)11,457 (81.96)14,224 (81)Postmenopausal

216 (5.7)857 (5.8)1073 (5.76)Missinga

Mode of detection, n (%)

1824 (48.01)8992 (60.78)10,816 (58.17)Mammographic screening

1975 (51.99)5802 (39.22)7777 (41.83)Symptomatic presentation

5 (0)35 (0)40 (0)Missing

19 (1-50)14 (1-50)15 (1-50)Tumor size (mm), median (range)

Multifocality, n (%)

2807 (74)12,730 (85.98)15,537 (83.54)Absent

986 (26)2075 (14.02)3061 (16.46)Present

11 (0)24 (0)35 (0)Missing

Histological type, n (%)

2997 (78.79)11,325 (76.37)14,322 (76.86)No special type

525 (13.8)1862 (12.56)2387 (12.81)Lobular

282 (7.4)1642 (11.07)1924 (10.33)Other invasive, including mixed types

Nottingham histological grade, n (%)

512 (13.6)3600 (24.57)4112 (22.32)1

2077 (55.03)7595 (51.83)9672 (52.49)2

1185 (31.4)3458 (23.6)4643 (25.2)3

30 (1)176 (1.2)206 (1.1)Missing

Estrogen receptor status, n (%)

291 (7.9)1199 (8.41)1490 (8.32)Negative (<1%)

3370 (92.05)13,053 (91.59)16,423 (91.68)Positive (≥1%)

143 (3.8)577 (3.9)720 (3.9)Missing

Progesterone receptor status, n (%)

490 (13.5)2182 (15.56)2672 (15.14)Negative (<1%)

3134 (86.48)11,839 (84.44)14,973 (84.86)Positive (≥1%)

180 (4.7)808 (5.4)988 (5.3)Missing

Human epidermal growth factor receptor 2 status, n (%)

3299 (87.88)12,989 (88.87)16,288 (88.67)Negative

455 (12.1)1627 (11.13)2082 (11.33)Positive

50 (1)213 (1.4)263 (1.4)Missing

Ki67 (%)

24 (1-100)20 (0-100)20 (0-100)Values, median (range)

10 (0)123 (0.8)133 (0.7)Missing, n (%)

aThe number of missing values is shown for noncomplete case variables.
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LVI and N Model Evaluation

Training and Validation of the LVI Model
The LVI model was trained on 613 patients in cohort I and
evaluated in the validation part of cohort III (n=525; Figure 2;
Multimedia Appendix 7). The model had an internal
cross-validation AUC of 0.799 (95% CI 0.751-0.846) and an
external validation AUC of 0.747 (95% CI 0.694-0.799; Figure
3). In addition, the LVI model showed good calibration in

external validation (Multimedia Appendix 8). The final
architecture for the LVI and N models can be found in
Multimedia Appendix 9.

All alternatives for LVI imputation were evaluated in cohort III

using the N model N-LVI_presentI. The model N-LVI_presentI

imputed with probabilistically drawn categorical values of LVI
status performed slightly better than the other options (Table
2); therefore, this type of LVI imputation was subsequently
used.

Figure 3. ROC curve for the LVI model. The lymphovascular invasion model had a discriminatory performance area under the receiver operating
characteristic curve (AUC) of 0.799 (95% CI 0.751-0.864) in the internal validation and an AUC of 0.747 (95% CI 0.694-0.799) in the external validation.
ROC: receiver operating characteristic.

Table 2. Area under the receiver operating characteristic curve (AUC) for the nodal status predictions of the model N-LVI_presentI for different
strategies for imputing values of lymphovascular invasion (LVI) status. The highest AUC, except when using the original LVI values, was obtained
when imputing LVI status using the probabilistic imputation, this is why we chose to use this method for LVI imputation in the subsequent analysis.

LVI status imputed by categor-
ical imputation with threshold
0.3

LVI status imputed by probabilistical-
ly categorical imputation

LVI status imputed by the
predicted probability

Original LVI status

0.738 (0.691-0.783)0.740 (0.693-0.784)0.737 (0.689-0.783)0.750 (0.704-0.795)N-LVI_presentI,
AUC (95% CI)

External Validation of the Original NILS Model
To externally validate the original NILS model in cohort II
without information on the LVI status, 3 N models

(N-LVI_presentI, N-LVI_imputedI, and N-LVI_absentI) were
developed for cohort I (n=761), as shown in Figure 2. The
original NILS model was internally cross-validated, with an

AUC of 0.740 (95% CI 0.723-0.758) [7]. In the external

validation in cohort II (n=18,633), both the N-LVIpresentI and

N-LVIimputedI models reached an AUC of 0.686 (95% CI
0.677-0.695; Figure 4, left [7]). Furthermore, upon validation,

the model N-LVIabsentI reached an AUC of 0.699 (95% CI
0.690-0.708). The classification performance of all N models
is summarized in Multimedia Appendix 10.
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Figure 4. The receiver operating characteristic (ROC) curve for the external validation (left) and the internal validation (right) of the original noninvasive
lymph node staging (NILS) model in the study by Dihge et al [7]. The models of this study had access to slightly different variables and a different

number of patients in the training cohort than that of the original NILS model. The models N-LVI_presentI and N-LVI_imputedI both included LVI
status, whereas N-LVI_absentI did not. Note that the original model was cross-validated with area under the receiver operating characteristic curve
(AUC) 0.740 in the study by Dihge et al [7], which was an average of 5 runs. The ROC curve of the original NILS model is in this figure represented
by the run closest to the mean; AUC 0.741.

The Impact of the LVI Model on the Overall N Status
Predictions
The internal validation of the N models showed a higher

performance for models N-LVI_presentI and N-LVI_imputedI

using LVI status (AUC 0.726, 95% CI 0.681-0.768 and AUC
0.711, 95% CI 0.762-0.750, respectively), compared with that

of model N-LVI_absentI not including the LVI status (AUC
0.705, 95% CI 0.665-0.744; Figure 4, right). For external

evaluation of the models N-LVI_presentI and N-LVI_imputedI,
the LVI model was used to predict the LVI status in cohort II.

When externally validated in cohort II (n=18,633), the models

N-LVI_presentI, N-LVI_imputedI, and N-LVI_absentI showed
similar performances (Figure 4, left). Therefore, the rest of the
external validation focused on the model developed without

access to the LVI status, N-LVI_absentI. In the calibration plot,

the model N-LVI_absentI demonstrated slightly lower
predictions than the true values in the external validation
(Multimedia Appendix 11). However, when transforming the

predictions in relation to the prevalence of N0 in the validation

cohort, the calibration of the model N-LVI_absentI was
satisfactory.

Comparison Between Developed N Models

The fourth N status model, N-LVI_absentII, was developed in
NKBC, a large population-based cohort. The cohort was
considerably larger (training cohort: 14,906/18,663, 80%) than
the development cohort for the other 3 N models and the original
NILS model [7] (cohort I). The test cohort of cohort II
(3727/18,663, 20%), set aside before the development of model

N-LVI_absentII, was used to compare the performance of the

developed N models. The models N-LVI_presentI,

N-LVI_imputedI, and N-LVI_absentI reached AUC of 0.684
(95% CI 0.663-0.705), 0.685 (95% CI 0.663-0.706), and 0.696
(95% CI 0.676-0.717), respectively (Figure 5). The model

N-LVI_absentII reached a slightly higher AUC of 0.709 (95%
CI 0.688-0.729). The calibration plot for the model

N-LVI_absentII is shown in Multimedia Appendix 12.
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Figure 5. ROC curves for the developed N models. Validation in the test cohort (n=3727) of cohort II for the nodal (N) models N-LVI_presentI,

N-LVI_imputedI, N-LVI_absentI, and the new N model N-LVI_absentII developed in a larger cohort. AUC: area under the receiver operating characteristic
curve; ROC: receiver operating characteristic.

Assessments of Potential Clinical Utility of the N Models
External validation of the N models before recalibration showed
potential in sparing approximately 20% of patients with cN0
breast cancer from axillary surgery when using an FNR of
<10%. When recalibrating the predictions for the model

N-LVI_absentI, the number decreased to approximately 16%).

However, the new N model N-LVI_absentII developed in cohort

II could potentially spare 24% of the patients with cN0 breast
cancer from SLNB. The standardized decision curve analyses
(Figure 6) specifically showed the range of predictions where
patients could benefit from using the 2 prediction models. The
standardized decision curve analysis for the original predictions

of N-LVI_absentI before recalibration is presented in Multimedia
Appendix 13.

Figure 6. Decision curves showing the standardized net benefit of the model N-LVI_absentI (recalibrated; left) and the model N-LVI_absentII (right).
The black horizontal line represents the scenario of all patients being diagnosed as node negative; hence, no sentinel lymph node biopsy (SLNB) is
performed. The colored function represents the diagnosis by the model. The golden, vertical (dashed) line at a threshold of approximately 0.9, separating
the lighter color from the darker, shows the threshold for false-negative rate (FNR) <10%. When all patients are considered node positive and diagnosed
through SLNB, the standardized net benefit is, by definition, 0. Notably, the darker, colored area does not represent the patients spared from surgery.
Rather, it displays the standardized net benefit of the model where FNR<10%. cN0: clinically node negative.
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Discussion

Principal Findings
The proportion of patients diagnosed with early-stage breast
cancer is increasing [4]. Along with improvements in adjuvant
therapy, surgical treatment is becoming more conservative.
Most patients with early-stage breast cancer have benign lymph
nodes and would benefit from preoperative noninvasive staging
of the axilla [3,4]. In this study, we externally validated a
previously published N model [7] in a national, large,
population-based register cohort (n=18,633) without access to
the LVI status and developed a new N model within the same
cohort. Notably, the discriminatory performance (AUC 0.709,

95% CI 0.688-0.729) of the new N model (N-LVI_absentII)
developed in the large population-based cohort demonstrated
that routine clinicopathological register data can be used to
develop an N model to identify 24% of patients with cN0 for
whom surgical axillary staging could be circumvented. The
model developed in cohort I without access to data on LVI status

(N-LVI_absentI) achieved an AUC of 0.699 (95% CI
0.690-0.708) and the potential to omit 16% of patients Malfrom
SLNB. The use of fewer variables and, in some cases, fewer
patients was expected to result in a slight decrease in the
performance of the models in this study compared with that of
the original model. The study is conducted in accordance with
the TRIPOD statement as displayed in Multimedia Appendix
14.

Comparison With Prior Studies
Multiple studies have investigated the discriminatory
performance of nomograms in predicting the N status using
retrospective clinicopathological data alone or in combination
with imaging features [6,8-17]. We aimed to externally validate
and further develop a diagnostic tool for the noninvasive staging
of N status using only routinely available clinicopathological
data that can be captured in the preoperative setting to improve
the clinical utility of the model. Li et al [8] and Gao et al [12]
developed nomograms using solely clinicopathological data
that can be obtained preoperatively. However, these studies did
not specify whether the data were extracted from the
preoperative or postoperative setting. Li et al [8] had the
advantage of a very large cohort (n=184,532); unfortunately,
combining external validation data with parts of the development
cohort resulted in an inaccurate external validation (AUC 0.718).
Gao et al [12] developed a nomogram based on 6314 patients
with external validation on 503 patients, where the shift from
training and internal validation to external validation increased
from an AUC of 0.715 and 0.688 to an AUC of 0.876,
respectively. This large discriminatory increase in external
validation is unexpected and warrants questioning the validity
of the model.

One possibility for the transition from postoperative to
preoperative variables is the use of imaging features. Mao et al
[15] developed a nomogram using CESM-reported lymph node
status and a radiomics signature to predict axillary lymph node
status. In addition, the nomogram was externally validated on
only 62 patients with an AUC of 0.79 (95% CI 0.63-0.94). Using
only features that can be obtained preoperatively is an advantage

in the study by Mao et al [15]. However, additional larger
external validation is required to confirm the results of the study.
Furthermore, CESM is not part of the mammography screening
program or routine workup for suspected breast malignancies,
limiting the clinical feasibility of the study. Bove et al [5]
developed a support vector machine (SVM) classifier for clinical
data and a SVM for radiomics data to predict N status. They
used soft voting, which combines the probabilities of each
prediction in the 2 models. They chose the prediction with the
highest total probability, which resulted in an AUC of 0.886 on
the holdout test set. Combining pre- and postoperative variables
is a limitation of the study, and the axillary US is an
operator-dependent imaging modality. However, the results
show the potential for using imaging features in machine
learning models for the noninvasive staging of N status. The
SVM classifier had an AUC of 0.739 using only postoperative
clinicopathological data, similar to that of the original NILS
model [7]. However, both the training (n=114) and test (n=28)
data sets were small; therefore, a larger external validation is
needed to confirm the results.

In this study, the LVI model, trained using only routine
clinicopathological variables and developed to increase the
feasibility of the NILS models in the preoperative setting, had
an external validation AUC of 0.747 (95% CI 0.694-0.799). To
the best of our knowledge, this is the first LVI model to be
incorporated into an N model. Preoperative assessment of LVI
on CNB is challenging, and several models have been developed
to predict the LVI status. For example, Shen et al [37] developed
a logistic regression model for the LVI status using
clinicopathological variables (n=392). Although the model
reached an AUC of 0.670 (95% CI 0.607-0.734) in the training
data set, it was not validated further. In addition, others have
investigated the importance of radiomics features for predicting
LVI status, for example, digital mammography features [38]
with LVI prediction specificity of 98.8% in the development
cohort and MRI features [39] with an AUC of 0.732 in the test
data set. However, while highlighting the potential for predicting
LVI status using radiomics, the data used are not part of the
diagnostic workup for breast cancer, thus limiting clinical
feasibility.

Despite the AUC of 0.747 for the LVI model in this study, the
imputation of values for the LVI status did not improve the
discriminatory performance of the N models in the large
population-based register cohort (NKBC). One problem with
developing prediction models for the classification question at
hand is the scarcity of larger cohorts including relevant
clinicopathological data such as LVI as well as the lack of
identified strong predictors of LVI. Those reported in the
literature include tumor size, HER2 status, and Ki67 [37] and
were included in the LVI model as well as in the N model, which
might have hampered the signal to predict N status by imputing
LVI. Novel approaches using image analysis seem to capture
features with superior discriminatory capacity [38,39].
Moreover, the reliability and distribution of data, such as
multifocality, may change in the preoperative setting [40], which
could change the prerequisites for predicting LVI status. Given
the growing evidence on the significance of LVI status as a
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predictor of axillary N status [7,11,22,41], further evaluation
of the presented LVI model is warranted.

Potential Clinical Utility
Omitting SLNB in subgroups of patients is consistent with the
American Society of Clinical Oncology guidelines from 2021
[2], stating that SLNB is optional for all patients aged ≥70 years
with cN0, ER+, and HER2− if the patient received adjuvant
endocrine therapy. In this study, using only routine
clinicopathological data, the models developed without access
to LVI status in cohort I (recalibrated) and cohort II presented
the potential to spare 16% to 24% of patients with cN0 from
SLNB, irrespective of age and tumor subtype. Providing
clinicians and patients with a decision support tool enabling the
identification of one quarter of patients as eligible for abstaining
SLNB could enhance the adoption of the 2021 American Society
of Clinical Oncology guidelines [2]. In addition, a health
economic study concluded that the NILS model is cost-effective
[42]. If lymphedema is considered to negatively affect patients’
quality of life, the NILS model also showed a net health gain
[42].

Strengths and Limitations
Criticism has been raised against the use of small sample sizes
in the development and external validation of machine learning
models in oncology as well as the poor handling of missing data
[39]. Accordingly, we aimed to externally validate the original
NILS model [7] in a nationwide and large population-based
register cohort (n=18,633) and to develop a new NILS model
within this larger cohort (14,906/18,633, 80%). Using a large
population-based register cohort is advantageous in the
following two ways: (1) its consecutive nature constitutes a
good approximation of the true distributions of the population
and (2) it demonstrates the reality of data handling where input
data will comprise missing values and occasional mistakes in
documentation. The limitations of using quality registry data
are the risk of misclassification and missing data, which were
handled by meticulous data curation and exclusion of patients
without properly defined or missing variables (1091/23,264,
4.69%). Moreover, the register lacks information on race; hence,
the generalizability to other populations outside Sweden has to
be proven in external data sets. Importantly, our findings
demonstrate that register data can be used to create an N model
with results just as satisfactory as those obtained from more
meticulously curated data, including the LVI status. Our external
validation of the original NILS model [7] was performed in a
temporally, geographically, and domain-wise different cohort
from the original development cohort. We presented calibration
and net benefit curves to demonstrate the utility of the models.
In addition, the 1091 patients in cohort II with missing or
incongruent data for axillary surgery and lymph node status
(Figure 1) showed a similar distribution of clinical variables
(data not shown) as the final study population of cohort II.
Therefore, there was no indication of selection bias.

Another strength of our study is the thorough management of
missing data using both the LVI model and multiple random
imputation. Our comprehensive handling of missing values may
increase the utility of N models in a clinical preoperative setting.
It also showed that for the discriminatory performance in N

staging, the manner in which the predictions of LVI status were
presented to an N model was of minor importance. However,
this requires further investigation in the preoperative setting
and use of an LVI model with an even higher discriminatory
performance to completely rule out the potential advantage of
MLP LVI predictions in NILS.

However, this study had some limitations. First, the models
were developed using a combination of variables available
before and after surgery to externally validate the original NILS
model [7], which is based on preoperative and postoperative
variables. Further development of the NILS concept is an
ongoing validation of the NILS model using exclusively
preoperative variables [29]. Second, the generalizability of the
LVI and N models developed in cohort I can be affected by the
smaller size of the development cohorts, which can be
considered a weakness of the study. Therefore, regularization
of the networks and 5-fold cross-validation were used to
minimize overfitting. The drop in performance from the internal
to external validation was small for all models, which is a clear
strength of our findings.

Recalibration was performed for the model developed without

access to LVI status in cohort I (N-LVI_absentI) because of the
different prevalence of benign lymph nodes in cohorts I and II
(497/761, 65.3% pathological benign nodal status [pN0] vs
14,829/18,633, 79.58% pN0). No recalibration was performed
for the LVI model because the prevalence of a positive LVI
status was similar in cohorts I and III. Notably, when
transforming the N status predictions in relation to the new
prevalence, the calibration and the overall net benefit of the

model N-LVI_absentI improved, whereas the fraction of patients
to be spared from SLNB decreased. Therefore, to potentially
increase the number of candidate patients to be omitted from
SLNB, an important future development of the model could be
to evaluate it using partial AUC [43] or concordant partial AUC
[44]. The model selection is then based on the model’s
performance under specific conditions, for example, FNR of
<10%, which could optimize the model performance for patients
most likely to benefit from the prediction. Another option is to
investigate the modification of the loss function when training
the MLP to optimize the algorithm for the largest number of
patients to be omitted from SLNB while maintaining the FNR
of <10%.

An additional strength of this study was the use of 3 disjoint
cohorts for model development and validation. After model
development, 2 patients in cohort I were incorrectly classified
as N0 instead of N+. However, these 2 patients corresponded
to <1% of the cohort and did not affect the overall results.
Cohort II demonstrated high validity and a high coverage of
key variables [28]. An independent researcher validated and
monitored cohort III according to a specific quality assurance
protocol to ensure well-characterized data. All variables, except
1, were defined in coherence; the mixed histological type was
categorized as missing in cohort III. However, this should have
a limited effect on the results because mixed histological type
is rare (approximately 5%) [45]. To avoid potential dependency
and information leakage between the 2 tumors and N statuses,
we excluded patients with bilateral tumors. The exclusion limits
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the target group to a minor extent, as bilateral cancers are
generally diagnosed in <5% of patients [46].

Future Studies
Future steps include a prospective external validation of the
NILS concept in a larger cohort and an evaluation of the
incorporation of LVI predictions in a NILS model in the
preoperative setting. External validation of the LVI model in a
Norwegian breast cancer cohort is also planned. The feasibility
of using register data for prediction modeling demonstrates the
possibility of using larger and less-curated databases in machine
learning models for NILS.

Implementing neural network models that are equal to or
superior to linear models allows extending the model to more
complex data that cannot be handled by logistic regression in
end-to-end learning. This enables less human interference,
simpler implementation, and models to optimize the entire task.
Therefore, to potentially improve the discriminatory
performance of noninvasive staging of lymph nodes for future
clinical implementation, additional types of data conferring to
the knowledge of lymphatic spread should ideally be
investigated. Imaging features are both preoperatively available
and have shown high discriminatory performance in N
prediction models [5,9-11,13-15]. The possibility of
incorporating mammography-based radiomics for the
preoperative prediction of N status is intriguing. However, there
are challenges in techniques to improve segmentation efficiency
and reduce subjective inconsistency from manual segmentation
for intratumoral and peritumoral feature extraction. In addition,
molecular subtypes are associated with the outcome as well as
N status, and the difficult-to-treat triple-negative subtype has
the lowest risk of N metastasis compared with luminal tumors
[6]. Consequently, models based on gene expression analysis

have shown potential in correctly identifying patients with N0
status in specific subtypes of breast cancer, such as luminal A
[47], ER+/HER2− [48], and triple-negative tumors [49], to
capture additional aspects of lymphatic spread, such as immune
signatures. Gene expression data have also shown the potential
to increase the number of candidate patients to be omitted from
SLNB when combined with clinicopathological data compared
with predicting N status using clinicopathological data alone
[50]. The added cost and effort of gene expression analysis
should be considered in relation to avoiding SLNB. In contrast,
gene expression–based assays, especially RNA sequencing, also
have the potential to provide additional information through
prognostic or predictive signatures. Therefore, planned
extensions of the NILS model include mammography images
and gene expression data, mainly focusing on molecular
subtypes and immune signatures.

Conclusions
We externally validated the original NILS model [7] in a large
population-based register cohort, with a discriminatory
performance of 0.699 (95% CI 0.690-0.708). Prediction of LVI
status did not improve the performance of the N model, despite
its documented importance in the prediction of axillary stage.
A new MLP model for predicting N status was developed in a
large population-based register cohort, demonstrating the
feasibility of developing a prediction model for noninvasive N
staging using register data comprising only variables available
in the preoperative setting and, notably, no information on LVI
status (AUC 0.709, 95% CI 0.688-0.729). Therefore, future
studies should evaluate the LVI model in the preoperative
setting, the ongoing preoperative validation of the NILS concept,
and extend the NILS model with preoperative and routinely
available data such as mammography images and gene
expression data.
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