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Abstract

Background: Breast cancer subtyping is a crucial step in determining therapeutic options, but the molecular examination based
on immunohistochemical staining is expensive and time-consuming. Deep learning opens up the possibility to predict the subtypes
based on the morphological information from hematoxylin and eosin staining, a much cheaper and faster alternative. However,
training the predictive model conventionally requires a large number of histology images, which is challenging to collect by a
single institute.

Objective: We aimed to develop a data-efficient computational pathology platform, 3DHistoNet, which is capable of learning
from z-stacked histology images to accurately predict breast cancer subtypes with a small sample size.

Methods: We retrospectively examined 401 cases of patients with primary breast carcinoma diagnosed between 2018 and 2020
at the Department of Pathology, National Cancer Center, South Korea. Pathology slides of the patients with breast carcinoma
were prepared according to the standard protocols. Age, gender, histologic grade, hormone receptor (estrogen receptor [ER],
progesterone receptor [PR], and androgen receptor [AR]) status, erb-B2 receptor tyrosine kinase 2 (HER2) status, and Ki-67
index were evaluated by reviewing medical charts and pathological records.

Results: The area under the receiver operating characteristic curve and decision curve were analyzed to evaluate the performance
of our 3DHistoNet platform for predicting the ER, PR, AR, HER2, and Ki67 subtype biomarkers with 5-fold cross-validation.
We demonstrated that 3DHistoNet can predict all clinically important biomarkers (ER, PR, AR, HER2, and Ki67) with performance
exceeding the conventional multiple instance learning models by a considerable margin (area under the receiver operating
characteristic curve: 0.75-0.91 vs 0.67-0.8). We further showed that our z-stack histology scanning method can make up for
insufficient training data sets without any additional cost incurred. Finally, 3DHistoNet offered an additional capability to generate
attention maps that reveal correlations between Ki67 and histomorphological features, which renders the hematoxylin and eosin
image in higher fidelity to the pathologist.
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Conclusions: Our stand-alone, data-efficient pathology platform that can both generate z-stacked images and predict key
biomarkers is an appealing tool for breast cancer diagnosis. Its development would encourage morphology-based diagnosis, which
is faster, cheaper, and less error-prone compared to the protein quantification method based on immunohistochemical staining.

(JMIR Cancer 2023;9:e45547) doi: 10.2196/45547
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Introduction

Rationale
Breast cancer is the fourth most frequent cause of death
worldwide [1]. Invasive breast cancer from the heterogeneous
group of breast epithelial malignancies shows distinct outcomes
and responses to therapy due to the presence of subtypes, which
can be defined based on the biomarker expression status [2].
These biomarkers include estrogen receptor (ER), progesterone
receptor (PR), androgen receptor (AR), erb-B2 receptor tyrosine
kinase 2 (ERBB2 or commonly called HER2), and antigen Ki67.
In clinical practice, biomarker expressions in invasive breast
cancer can be evaluated using immunohistochemical (IHC)
staining. IHC has been a routine clinical process for a long time,
but it is still susceptible to the pathologist’s subjectivity and
human errors [3]. Besides, due to the high specificity of IHC
staining that can only identify a single biomarker at a time,
multiple rounds of IHC staining are often required and, thus,
deemed to be costly and time-consuming.

Hematoxylin and eosin (H&E) staining is another routine
clinical procedure for primary cancer diagnosis (eg, cancer vs
benign) and is generally performed prior to IHC staining.
Although it has been suspected that H&E-stained slides may
reflect the characteristic phenotypes of the prognostic
biomarkers [4,5], recent deep learning models show the
possibility of capturing latent features from H&E images and
achieving reasonably accurate prediction of the subtype
biomarkers [6-8], potentially saving clinical resources. However,
these models rely on a massive number of training samples that
often require data collection from multiple institutes. In practice,
this approach is challenging due to a number of reasons: (1)
there are inevitable data variations among institutes due to
differences in equipment models and protocols adopted by each
institute, and (2) data sharing across institutes faces data privacy
and security issues. Such a dilemma may be overcome by
developing a data-efficient model that is capable of learning
from smaller training samples that still maintains high prediction
accuracy.

Recent deep learning research has been focusing on the analysis
of 3D medical images [9-12]. This is because 3D images offer
additional information that may not be unveiled in the 2D
images, leading to a more accurate classification of tissues.
Likewise, 3D visualization at the cellular level is able to capture
the complete morphology of nuclei, which is closely associated
with cancer pathology and medical complications [13,14].
However, 3D histology images are less popular, as 3D
histomorphological features rarely appear intuitive to human
eyes. Hence, 2D histology image-based cancer prediction models
have thus far been proposed [6-8]. Nevertheless, we
hypothesized that these 3D features carry useful information
that can help our proposed deep learning model to learn more
effectively, even from a small set of data.

Objectives
In this study, we developed a data-efficient computational
pathology platform, 3DHistoNet, to identify all 5 biomarkers
(ER, PR, AR, HER2, and Ki67) associated with breast cancer
subtypes. We aimed to demonstrate that our model can (1)
generate z-stacked histology images suitable as a 3D data set
for the training of our model; (2) harness a 3D data set to achieve
improved prediction performance even with a smaller sample
size; and (3) additionally produce attention maps that visualize
the morphological characteristics of various prognostic
biomarkers, thereby allowing pathologists to directly gain
molecular information from H&E slides alone.

Methods

As shown in Figure 1, our pathology platform is composed of
3 stages: the preparation of the z-stacked whole slide tissue
image data set (Figure 1A), self-supervised feature extraction
from z-stacked tissue images (Figure 1B), and an attention-based
prediction model (Figure 1C). The following subsections
describe each of the stages. This study is reported according to
the Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research [15].
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Figure 1. Schematics of 3DHistoNet for the prediction of prognostic biomarkers from hematoxylin and eosin slides. The model consists of 3 stages:
(A) the preparation of z-stacked whole slide tissue images, (B) self-supervised feature extraction from z-stacked tissue images, and (C) attention-based
prediction model. AR: androgen receptor; CNN: convolutional neural network; ER: estrogen receptor; HER2: erb-B2 receptor tyrosine kinase 2; PR:
progesterone receptor; SSL: self-supervised learning.

Data Source
We retrospectively examined 401 cases of patients with primary
breast carcinoma diagnosed between 2018 and 2020 at the
Department of Pathology, National Cancer Center, South Korea.
Pathological diagnoses of the specimens were performed by a
breast pathologist following the World Health Organization
guidelines and the American Joint Committee on Cancer staging
manual (8th edition). Glass slides; medical charts; and
pathological records including histologic grade, hormone
receptor (ER, PR, and AR) status, HER2 status, and Ki-67 index
were reviewed by another pathologist before collecting cases.
Patients who meet any of the following conditions were
excluded: (1) whole slide images were not available, (2)
malignant lesions were not found, and (3) diagnosed as having
breast cancer. Positive ratios for each biomarker were as follows:
ER (313/401, 78.1%), PR (279/401, 69.6%), AR (353/401,
88%), HER2 (305/401, 76%), and Ki67 (258/401, 64.3%).

Ethics Approval
The retrospective study protocol was approved by the
Institutional Review Board of the National Cancer Center
(NCC2021-0283).

Preparation of z-Stacked Whole Slide Images for
Model Building
We scanned the entire morphology of the H&E-stained tissue
specimens using a pathology slide scanner (Aperio AT2, Leica
Biosystems) set at a magnification of 40× (pixel size of 0.25
µm). At each focal plane, the lateral (x-y) dimensions were
scanned. After completion, the focal plane was shifted by
moving the objective lens axially at an interval of 0.5 µm to
stack the whole slide scanning. To cover the entire depth of
focus determined by the tissue thickness (3-4 µm) and further
extended by the axial resolution (~2 µm) of the objective lens,
17 z-stack layers (~8 µm) were obtained. Due to the insufficient
precision of the translational stage in the scanner, misalignment
along the stack layer may occur. As a correction, we used an
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image registration algorithm with affine transformation provided
by ImageJ. As breast cancer subtypes are a subset of cancer,
we confined our region of interest to the cancer region as
annotated by trained, certified pathologists. The region was then
cropped into 256×256 image tiles without any overlap for a
multiple instance learning (MIL) approach. The total number
of tiles obtained was 187,921 from 401 specimens.

Predictive Models
We used a self-supervised learning (SSL) approach to train a
neural network that extracts low-dimensional features from
z-stacked H&E image stacks in a label-free way. Specifically,
we adopted the recently proposed Simple Framework for
Contrastive Learning of Visual Representations (SimCLR) [16]
as our SSL framework. SimCLR learns to extract abstract
features from H&E scans by maximizing the “agreement”
between the altered views of the same input and minimizing it
otherwise.

Figure 1B illustrates the application of SimCLR to our task of
extracting features from z-stacked H&E tiles. First, we generated
altered views for each z-stacked H&E tile by applying a set of
mild image transformations, such as affine transform, color
jittering, resizing, and cropping, which still preserved most of
the key semantics of the original input tile. These altered views
were then passed through a neural network, referred to as 2D
convolutional neural network (CNN) in the figure, which outputs
low-dimensional features for each of the views, shown as
colored dots in the figure. We used InfoNCE loss [17] as the
training objective that “attracts” the features generated from the
same input tile and “repels” the features from different input
tile sources. This “attract” and “repel” process is visualized in
the figure as the proximity of colored points within a sphere. A
more formal explanation that accompanies mathematical
notations and definitions is available in Multimedia Appendix
1 [16-19].

After training the feature extractor neural network 2D CNN as
described in the previous subsection, the next step was to use
the extracted features to train another set of neural networks for
the actual cancer subtypes prediction task. The overview is
shown in Figure 1C. First, we extracted features from z-stacked
input tiles using the SSL pretrained neural network 2D CNN.
The extracted features were passed through a set of prediction
modules comprising 3 submodules: (1) a 1D CNN module that
integrates z-stacked representations into a single representation;
(2) an attention module that generates a heatmap, which assigns
a higher value to the representations that contribute strongly to
prediction; and (3) a classifier layer that produces a probability
of different cancer subtypes.

Regarding the z-stacked representations as multichannel 1D
signals that may contain informative interactions across the
signals, we applied 1D CNN to find such interactions across
the stacks and integrated them into a single representation,
represented as gray dots in the figure. The 1D CNN is comprised
of 2 CNN blocks. Each block contains a 1D convolutional layer
and a rectified linear unit layer. Taking the set of integrated
representations as inputs, an attention module generates scores
that measure the relative importance of each representation to
the final prediction. The attention module not only helps to

accelerate the model training but also assists health care
practitioners in identifying potential areas that may require
further focus.

Finally, the computed attention scores were used to perform a
weighted average across the representations set and subsequently
fed into a classifier module comprised of a fully connected layer
and a softmax layer to produce cancer subtype probabilities.
All 3 submodules were trained based on latent features of the
H&E image stack in an end-to-end fashion with a cross-entropy
loss function that matches the prediction with the ground-truth
cancer subtype labels (ER, PR, AR, HER2, and Ki67). A more
formal explanation that accompanies mathematical notations
and definitions is available in Multimedia Appendix 1.

Model Training Setting
We used ResNet50 as our feature extractor neural network [18].
During SSL pretraining, we set the tile size to 256,set the
training batch size to 256, and trained for 250 epochs. For
generating different views from a source tile, we applied random
cropping with a scale between a factor of 0.4 to 1; rotations of
0°, 90°, 180°, and 270°; horizontal flipping; color jittering; RGB
to grayscale; gaussian blur; and solarization. Additionally, to
accelerate the training speed and reduce large memory
consumption, we used mixed-precision training, which combines
single precision (32 bit) and half precision (16 bit). We optimize
the model using the Adam optimizer [20] with a learning rate
of 0.0003.

In the cancer subtype prediction task, we trained the 3 modules
of our model with a batch size of 1 because each specimen has
a varying tile number depending on the specimen size. No
augmentation is applied to the features extracted from the tiles
as the features are no longer humanly interpretable, making it
difficult to know which augmentation preserves the key contents
of the representation. We oversampled minority labels to address
the class imbalance issue. We optimized the model using Adam
optimizer [20] with a learning rate of 0.0001. We measured the
variability of the model prediction with 5-fold cross-validation
as internal validation. We also implemented an identical 5-fold
split during the SSL pretraining step to ensure that there is no
bias favoring our proposed approach over other baseline
approaches. The average receiver operating characteristic curve
and its area under the curve (AUC) over the 5-fold validation
results were used to measure the model performance. Our
3DHistoNet was implemented in PyTorch [21] (version >1.9.0)
and trained on a single NVIDIA Tesla V100 GPU with 32GB
memory.

For comparison with our model, we used ImageNet-pretrained
ResNet50 (IMAGENET), which is officially available in
PyTorch as the baseline feature extractor. During the
IMAGENET pretraining, a standard set of data augmentation
techniques (random crop, resize, rotation, and intensity
adjustments) were applied. For model optimization, stochastic
gradient descent was applied with a learning rate of 0.1,
momentum of 0.9, and decay rate of 0.99998. A minibatch size
of 256 was used during pretraining.
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Results

Evaluation of the Model Performance of 3DHistoNet
The classification capability of 3DHistoNet for all prognostic
biomarkers, including ER, PR, AR, HER2, and Ki67, is shown
in Figure 2. The AUC ranged from 0.75 to 0.91, demonstrating
outstanding prediction accuracy despite being trained with a
small data set (n=401). For comparison, we repeated the
experiments with a single best-focused image from the image
stack as representative of a 2D data set or with an IMAGENET

model in place of SimCLR. We found that 3DHistoNet
significantly outperformed IMAGENET regardless of the data
type and target class, suggesting the superiority of the SSL
model over the conventional supervised learning model. Our
results also showed that the use of the image stack generally
enhanced the classification performance compared to the 2D
counterparts. On the other hand, both 3DHistoNet and
IMAGENET scored an ascending order of AR, PR, ER, Ki67,
and HER2 in terms of prediction performance, implying that
the difficulty of the classification task is dependent on the
characteristic features associated with the biomarkers.

Figure 2. 3DHistoNet shows superior performance in the prediction of prognostic biomarkers (ER, PR, AR, HER2, and Ki67) in comparison with the
conventional supervised learning model. Box plots of the area under the curve (AUC) are plotted to compare the performance of 3DHistoNet with
ImageNet-pretrained ResNet50 model (IMAGENET) when trained with 2D and 3D histology data sets, respectively (n=401). AR: androgen receptor;
ER: estrogen receptor; HER2: erb-B2 receptor tyrosine kinase 2; PR: progesterone receptor.

We further performed a t-Distributed Stochastic Neighbor
Embedding analysis (Figure 3) to compare the discrimination
power of the 2 models without the confounding effects from
the downstream layers (ie, prediction model). The results
showed that 3DHistoNet forms more distinguishable clusters

compared to IMAGENET, confirming the higher discrimination
capability of the former. This trend is consistent with Figure 2,
whereby AR showed the most contrasting clusters (Figure 3C)
and HER2 showed the most overlapping features (Figure 3D).
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Figure 3. t-Distributed Stochastic Neighbor Embedding (tSNE) analysis on low-dimensional features of the 3D data set from feature extraction modules
of 3DHistoNet (SimCLR) and IMAGENET. 3DHistoNet attained higher discrimination power at the feature extraction stage. AR: androgen receptor;
ER: estrogen receptor; HER2: erb-B2 receptor tyrosine kinase 2; IMAGENET: ImageNet-pretrained ResNet50; PR: progesterone receptor; SimCLR:
Simple Framework for Contrastive Learning of Visual Representations.

It has been shown that the MIL approach is suitable for the
classification of histology images [22,23]. The aggregation of
the prediction results of patch images can effectively diagnose
the whole slide image that these patches belong to. With a few
choices of MIL algorithms (MeanPool, MaxPool, and Attention)
given [24], we investigated the optimal algorithm for our
classification task (Table 1). In general, the attention algorithm
scored the highest accuracy for AR, PR, and HER2; although

overall, no statistical significance in the performance of the 3
algorithms was observed. The result could imply that the high
classification performance is mainly attributed to our SSL
module. However, further validation with a sufficiently large
data set remains to be done in the future. For our
implementation, we chose the attention algorithm owning to its
additional visualization function to highlight key diagnostic
features.
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Table 1. Comparison of the 3DHistoNet performance with different multiple instance learning algorithms (MeanPool, MaxPool, and Attention).

Attention, mean (SD)MaxPool, mean (SD)MeanPool, mean (SD)Biomarker

0.883 (0.026)0.89 (0.044) b0.882 (0.041)ERa

0.888 (0.036)0.875 (0.032)0.882 (0.04)PRc

0.906 (0.075)0.893 (0.082)0.879 (0.093)ARd

0.748 (0.049)0.739 (0.053)0.732 (0.054)HER2e

0.857 (0.03)0.823 (0.012)0.861 (0.033)Ki67

aER: estrogen receptor.
bItalicization represents the multiple instance learning algorithm with the highest performance for each biomarker.
cPR: progesterone receptor.
dAR: androgen receptor.
eHER2: erb-B2 receptor tyrosine kinase 2.

Assessment of the Data Efficiency of 3DHistoNet
The results in Figure 2 imply that the benefit of using the image
stack is greater with 3DHistoNet than with IMAGENET,
suggesting that 3DHistoNet is more efficient in the extraction
of relevant information from the image stack. To prove this, we
evaluated the average contributions of z-slices to the biomarker
prediction (Figure 4). The result shows that 3DHistoNet referred

to more significant slices at different levels, whereas
IMAGENET assigned equal importance to all layers, implying
that it cannot extract significant information from the multiple
layers. Further, we also noticed that 3DHistoNet showed
different referencing patterns depending on the biomarkers,
substantiating its capability to predict different biomarkers with
the same architecture.

Figure 4. A graph that indicates the slice-wise feature importance in predicting biomarkers, which is computed by aggregating the Gradient-weighted
Class Activation Mapping (Grad-CAM) score across all spatial axes (height and width) and tiles (A-E). The shaded region indicates the empirical SD
of the slice-wise feature importance estimated using a held-out test set. AR: androgen receptor; ER: estrogen receptor; HER2: erb-B2 receptor tyrosine
kinase 2; IMAGENET: ImageNet-pretrained ResNet50; PR: progesterone receptor.

We also proved that the z-stacked histology image helped
overcome the shortage of training data set, which is encountered
as a common limitation imposed on model performance. We
sequentially sampled subsets of the training data set in the
proportion of 30%, 50%, and 70% of the total number of cases
in the training set (Figure 5). The performance of 3DHistoNet
generally reached the optimal level with 70% of the data set

except for AR (Figure 5C), implying that 3D information can
make up for the shortage of the training data set, thereby
contributing to the higher prediction capability. Note that since
we obtained the 3D data set merely by z-stacking the same H&E
tissue samples, no additional cases were added to increase the
training data set, thus demonstrating the cost-effectiveness of
3DHistoNet.
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Figure 5. Box plots based on the area under the curve (AUC) to show the data set size–dependent performance of 3DHistoNet in terms of the 5-fold
average AUCs. The model was independently trained with 30% (n=120 cases), 50% (n=200 cases), 70% (n=280 cases), and 100% (n=401 cases) of the
3D histology data set. AR: androgen receptor; ER: estrogen receptor; HER2: erb-B2 receptor tyrosine kinase 2; PR: progesterone receptor.

Morphological Examination of Prognostic Biomarkers
Using Attention Visualization
We assessed the interpretability of the model prediction by
reviewing the attention maps produced together with the
classification results. In the attention map consisting of the raw
histology image and the corresponding heatmap, regions giving
major contributions to the classification are highlighted brighter,
whereas darker regions suggest fewer contributions. A certified
pathologist manually reviewed the attention maps of Ki67
expression. This cell proliferation marker is known to have
strong associations with cell morphology [25], thereby
explaining possible correlations between characteristic
phenotypes and model prediction.

In some Ki67+ tiles, brighter regions generally consisted of
high-grade cells whose nucleoli are prominent with a large

nucleus, irregular nuclear membrane, and vesicular chromatin
(Figure 6A—orange box), thus indicating an active cell cycle.
In contrast, the brighter regions of the Ki67– images depict
smaller, round nuclei with smooth contours, suggesting cells in
the dormant (G0) phase (Figure 6B—orange box). Another
interesting observation is that fibrosis, a ubiquitous feature in
both Ki67+/– tiles (Figure 6A, C, and D—red boxes) and
adipocyte (Figure 6B—red box), which lacks characteristic
morphology, are assigned lower weights (darker regions). This
result suggests a high specificity of the attention map module.
Other Ki67+ tiles are characterized by coagulative necrosis
(Figure 6C—orange box), which occurs as a result of cell
proliferation occurring faster than neovascularization, leading
to localized ischemia [26]. On the other hand, Ki67– maps
highlight the lumen as a unique feature (Figure 6D—orange
box). Such differentiable features can also be observed in AR
(Multimedia Appendix 2).
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Figure 6. 3DHistoNet can highlight discriminatory features between Ki67+ and Ki67– images by overlapping raw images with corresponding heatmaps.
(A) and (B) Orange boxes show distinct cellular features for differentiation between Ki67+/– cases, which were highlighted with brighter coloration in
the heatmap. The orange box in (C) highlights coagulative necrosis as a unique feature in Ki67+ cases, whereas (D) shows the lumen as a characteristic
feature of the Ki67– group. Less discriminative features such as fibrosis and adipocyte were highlighted with darker coloration (red boxes in A to D).

Further, given that ER expression has high positive correlations
with PR [27], the attention maps of the 2 biomarkers over the
same image can also identify the common features accounting
for their correlation (Figure 7). In the ER+/PR+ image, the pair
of attention maps assigned high weightage to the region
consisting of low-grade cancer cells with lumen formation
(orange box). In contrast, the stroma and fibroblast were paid

less attention in both attention maps. In the case of the ER–/PR–
image, high-grade cell features (enlarged nucleus, prominent
nucleoli, and coarse chromatin) were highlighted, whereas cells
aligned along the blood vessels were disregarded. This result
supports the consistency of our attention maps with useful
clinical interpretation of 3DHistoNet.
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Figure 7. 3DHistoNet can identify common features responsible for the strong positive correlation between ER and PR expressions. (A) In the ER+/PR+
image, low-grade cancer cells with ductal differentiation were commonly highlighted (orange box), whereas amorphous features of fibroblast and stroma
were paid less attention (red box). (B) In the ER–/PR– image, the less growth pattern of the high-grade tumor cells was assigned brighter coloration
(higher weightage, orange box), whereas cells along the blood vessels were assigned darker coloration (red box). ER: estrogen receptor; PR: progesterone
receptor.

Discussion

Principal Findings
Breast cancer subtyping is a crucial step in determining
therapeutic options, but the molecular examination based on
IHC staining is expensive and time-consuming. Our
data-efficient computational pathology platform, 3DHistoNet,
demonstrates the capability to generate z-stacked histology
images, based on which the model is trained to predict the set
of all breast cancer subtypes. The main advantages of our model
are that our prediction accuracy surpasses the conventional MIL
model by 0.11 in terms of AUC and that such outstanding
performance can be achieved with a small training data set.
Finally, our platform can concurrently generate attention maps
over H&E images for histopathological interpretations on the
results, thereby strengthening our model’s clinical validity.

Techniques to Improve the Generalizability of the Deep
Learning Model
Training an end-to-end deep neural network to predict subtype
biomarkers from z-stacked H&E scans poses challenges due to
2 factors: the large image size and the absence of pixel-level
annotations corresponding to each subtype. The limited memory
capacity of GPUs makes it impractical to fully use the
high-resolution 3D image tiles from each specimen during
training [7]. Moreover, cancer subtype prediction relies on local
features that are not uniformly spread across the tissues but
rather locally confined [28]. Consequently, learning features
that robustly characterize cancer subtypes without manual
annotations to guide pixel-level model training becomes
challenging. As a result, a standard end-to-end trained deep
neural network for subtype prediction is prone to suffering from
memory capacity issues as well as overfitting.

To improve the memory and computational efficiency, we
deployed the SSL module into our 3DHistoNet, which offers
an alternative approach to extracting low-dimensional features
without supervision from either specimen-level or patch-level

subtype labels. Therefore, without having to feed all the patches
from the whole slide image, SSL techniques can flexibly adjust
the number of patches according to the given memory size of
GPUs. The extracted features are shown to generalize well on
all 5 prognostic biomarkers. Consequently, separate training
for feature extraction of each biomarker is unnecessary, leading
to higher computational efficiency.

We designed our model to be robust against the overfitting issue
commonly observed in deep learning models for pathology
images. First, in contrast to the standard neural network–based
classification model that learns both the feature embedding and
probability nodes for final end-to-end prediction, we adopted
a 2-step training approach by separating the training of the
embedding module from the cancer subtype prediction module,
so that the number of parameters involved during each training
can be reduced. Additionally, our SSL pretrained ResNet50
maps each 3D image tile from 256×256×3×17 to 1024×17,
reducing the feature dimension by 192 times. Even if a sample
has 50 such patches, the total number of features is only
50×1024×17, which is merely twice the number of features in
a standard image with a size of 256×256×3. Therefore, despite
the high dimensionality of the stacked image, the encoded
features are manageable.

Further, by using a 1D convolution layer to integrate the
z-stacked features, we kept the complexity of our model low,
even with the large size of the image stack used. In contrast to
a fully connected layer, where the number of trainable weights
is directly associated with the input feature size, the 1D
convolution layer allows weight sharing by traversing a small
weight kernel across the feature. Therefore, when comparing
the number of parameters between the models used for 2D and
3D pathology data sets, the 3D instance is only twice as large
as the 2D instance. Consequently, the model complexity of the
3D instance, which impacts the risk of overfitting, is not
significantly increased compared to the 2D instance.
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Validation on Performance Improvement by Histology
Stack
The theoretical axial (z-axis) resolution of our whole slide
scanner is about 2 μm, which is insufficient to visualize 3D
tissue morphology with high resolution. Consequently, the upper
or lower layers of our z-stack images show an overlap between
the “in-focus” image of the upper or lower layers and the
“out-of-focus” image of the middle layer, leading to an apparent
blur in our image stack. Nevertheless, our results (Figures 2-5)
draw a consensus that the image stack carries additional latent
information that can contribute to the model performance. To
verify our idea, we trained 3DHistoNet with a virtual image
stack, which was prepared by blurring the “in-focus” image
using an image-processing technique such that it appears to be
the same as our histology image stack but empty of axial
information (Multimedia Appendices 3-4). Multimedia
Appendix 5 shows that our raw data set gives higher model
performance compared to the virtual one, thus supporting our
claim.

Clinical Implications
The dual functions of our model to predict subtype biomarkers
and generate attention maps hold several clinical values. First,
the prediction of the biomarkers using H&E slides eliminates
the necessity of IHC staining, saving up a substantial amount
of the pathologist’s time and clinical resources. This benefit is
especially valuable in the case of Ki67, whose diagnosis is
time-consuming due to the manual counting of stained nuclei.
On the other hand, the heatmap generated by our model
identifies the characteristic features of the target biomarkers,
rendering the prediction mechanism explainable and, thus,
increasing the fidelity of our model to the pathologist.

Limitations
The discriminative power of the features learned using SSL
heavily depends on the choice of augmentation techniques. The
augmented views from the same image should neither share too
much nor too little mutual information [29]. However, finding
the sweet spot is nontrivial, as it varies with both the data type
[30,31] and downstream prediction task [32]. In our case, where
prediction relies on cell morphology, the potential variations in
morphological features across different biomarkers are unknown.
If we knew such morphological discriminative features

beforehand, we could further improve our model’s performance
by injecting the prior knowledge during the SSL pretraining.
This could be achieved either by removing augmentations that
potentially “destroy” the morphological features or by adding
augmentations that amplify the learning of morphological
features. Hence, additional research is required to explore the
optimal combination of augmentation methods that can further
enhance the discriminability of the learned features.

Implementing data augmentation in our prediction module
(Figure 1C) poses another challenge, as the inputs to the
classifier module are low-dimensional abstract representations
of image patches that we can hardly interpret. Thus, it is difficult
to determine the adequate augmentations that still preserve the
key discriminative features. One way to overcome the issue is
to freeze the parameters in the feature extraction module (Figure
1B) and attach them to the classifier module. This way, we can
perform augmentations on images and feed them directly to the
classifier module; however, this would be at the cost of increased
computation time and memory consumption. Therefore, it is
encouraged to seek other alternatives, such as directly
augmenting representations with interpolation and extrapolation
[33] or turning the outputs of the feature extraction module to
follow a tractable distribution with more control [34].

Conclusion
In conclusion, we developed a data-efficient, stand-alone
pathology platform, 3DHistoNet, which enables the generation
of a z-stacked histology image data set and SimCLR-based
prediction for 5 breast cancer subtype biomarkers.

We show that 3DHistoNet significantly outperformed the
IMAGENET-pretrained supervised model in the prediction of
all biomarkers, even with a limited sample size. Our model
simultaneously generates attention heatmaps that are indicative
of the correlation between biomarker expression and
histomorphological characteristics, which would render the
H&E image with higher interpretability to promote the
morphology-based diagnosis among pathologists. The
implementation of 3DHistoNet would encourage
morphology-based diagnosis, which is faster, cheaper, and less
error-prone compared to the protein quantification method based
on IHC staining.
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Multimedia Appendix 1
Mathematical definitions.
[DOCX File , 24 KB-Multimedia Appendix 1]

Multimedia Appendix 2
3DHistoNet can highlight discriminatory features between AR+ and AR– images. (A) In the AR+ image, abundant granular
eosinophilic or vacuolated cytoplasm with distinct cell borders were highlighted as distinct features that contribute to the prediction
of the image as AR+ (orange box). In contrast, regions consisting of fibroblast, stroma, and cells with high nucleus-to-cytoplasm
ratio were not identified as characteristic features (red box). (B) In the AR– image, basal-like or medullary patterns with high-grade
cancer cells were the key features (orange box), whereas blood vessel and condensed tumor cells were highlighted as being less
prominent (red box). AR: androgen receptor.
[PNG File , 1495 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Examples of a raw histology image stack.
[MP4 File (MP4 Video), 604 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Examples of a virtual image stack prepared by blurring the "in-focus" image of a raw stack to an increasing degree. Note that
despite their similar appearance, the raw stack should contain more morphological information than the virtual stack.
[MP4 File (MP4 Video), 399 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Comparison of the 3DhistoNet performance with z-scanned and virtual image stack in terms of ROC-AUC. In general, training
with the z-stacked image gives higher model performance compared to the virtual dataset.
[PNG File , 213 KB-Multimedia Appendix 5]

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021 May;71(3):209-249
[FREE Full text] [doi: 10.3322/caac.21660] [Medline: 33538338]

2. Tan PH, Ellis I, Allison K, Brogi E, Fox SB, Lakhani S, WHO Classification of Tumours Editorial Board. The 2019 World
Health Organization classification of tumours of the breast. Histopathology 2020 Aug;77(2):181-185 [FREE Full text] [doi:
10.1111/his.14091] [Medline: 32056259]

3. Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical
Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2
testing in breast cancer. Arch Pathol Lab Med 2007 Jan 1;131(1):18-43 [FREE Full text] [doi: 10.5858/2007-131-18-asocco]

4. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, et al. Phenotypic evaluation of the basal-like
subtype of invasive breast carcinoma. Mod Pathol 2006 Feb;19(2):264-271 [FREE Full text] [doi:
10.1038/modpathol.3800528] [Medline: 16341146]

5. Rawat RR, Ruderman D, Macklin P, Rimm DL, Agus DB. Correlating nuclear morphometric patterns with estrogen receptor
status in breast cancer pathologic specimens. NPJ Breast Cancer 2018 Sep 04;4(1):32 [FREE Full text] [doi:
10.1038/s41523-018-0084-4] [Medline: 30211313]

6. Couture HD, Williams LA, Geradts J, Nyante SJ, Butler EN, Marron JS, et al. Image analysis with deep learning to predict
breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 2018;4:30 [doi:
10.1038/s41523-018-0079-1] [Medline: 30182055]

JMIR Cancer 2023 | vol. 9 | e45547 | p. 12https://cancer.jmir.org/2023/1/e45547
(page number not for citation purposes)

Bae et alJMIR CANCER

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app1.docx&filename=af75079fb0317181afd732af97aab645.docx
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app1.docx&filename=af75079fb0317181afd732af97aab645.docx
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app2.png&filename=a08eee90d4ccf728e20d6a1e2d289937.png
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app2.png&filename=a08eee90d4ccf728e20d6a1e2d289937.png
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app3.mp4&filename=9ea665f55aae9b7ee32eb9e9a5ae99d9.mp4
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app3.mp4&filename=9ea665f55aae9b7ee32eb9e9a5ae99d9.mp4
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app4.mp4&filename=457e8d5e380711ff435c0e59a827ce5c.mp4
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app4.mp4&filename=457e8d5e380711ff435c0e59a827ce5c.mp4
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app5.png&filename=a6fb85662391fb586aebc2e844a785cf.png
https://jmir.org/api/download?alt_name=cancer_v9i1e45547_app5.png&filename=a6fb85662391fb586aebc2e844a785cf.png
https://onlinelibrary.wiley.com/doi/10.3322/caac.21660
http://dx.doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33538338&dopt=Abstract
https://doi.org/10.1111/his.14091
http://dx.doi.org/10.1111/his.14091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32056259&dopt=Abstract
https://doi.org/10.5858/2007-131-18-ASOCCO
http://dx.doi.org/10.5858/2007-131-18-asocco
https://linkinghub.elsevier.com/retrieve/pii/S0893-3952(22)02000-2
http://dx.doi.org/10.1038/modpathol.3800528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16341146&dopt=Abstract
https://doi.org/10.1038/s41523-018-0084-4
http://dx.doi.org/10.1038/s41523-018-0084-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30211313&dopt=Abstract
http://dx.doi.org/10.1038/s41523-018-0079-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30182055&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


7. Naik N, Madani A, Esteva A, Keskar NS, Press MF, Ruderman D, et al. Deep learning-enabled breast cancer hormonal
receptor status determination from base-level H&E stains. Nat Commun 2020 Nov 16;11(1):5727 [doi:
10.1038/s41467-020-19334-3] [Medline: 33199723]

8. Shamai G, Binenbaum Y, Slossberg R, Duek I, Gil Z, Kimmel R. Artificial intelligence algorithms to assess hormonal
status from tissue microarrays in patients with breast cancer. JAMA Netw Open 2019 Jul 03;2(7):e197700 [FREE Full
text] [doi: 10.1001/jamanetworkopen.2019.7700] [Medline: 31348505]

9. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully
connected CRF for accurate brain lesion segmentation. Med Image Anal 2017 Feb;36:61-78 [FREE Full text] [doi:
10.1016/j.media.2016.10.004] [Medline: 27865153]

10. Wegmayr V, Aitharaju S, Buhmann J. Classification of brain MRI with big data and deep 3D convolutional neural networks.
2018 Feb 27 Presented at: SPIE Medical Imaging 2018: Computer-Aided Diagnosis; February 10-15, 2018; Houston, TX
[doi: 10.1117/12.2293719]

11. Zhou J, Luo L, Dou Q, Chen H, Chen C, Li G, et al. Weakly supervised 3D deep learning for breast cancer classification
and localization of the lesions in MR images. J Magn Reson Imaging 2019 Oct 29;50(4):1144-1151 [doi: 10.1002/jmri.26721]
[Medline: 30924997]

12. Oh K, Chung Y, Kim KW, Kim W, Oh I. Classification and visualization of Alzheimer's disease using volumetric
convolutional neural network and transfer learning. Sci Rep 2019 Dec 03;9(1):18150 [FREE Full text] [doi:
10.1038/s41598-019-54548-6] [Medline: 31796817]

13. Veltri RW, Christudass CS. Nuclear morphometry, epigenetic changes, and clinical relevance in prostate cancer. Adv Exp
Med Biol 2014 Jan 1;773:77-99 [FREE Full text] [doi: 10.1007/978-1-4899-8032-8_4] [Medline: 24563344]

14. Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells. Nat Rev Cancer 2004 Sep;4(9):677-687 [doi:
10.1038/nrc1430] [Medline: 15343274]

15. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning
predictive models in biomedical research: a multidisciplinary view. J Med Internet Res 2016 Dec 16;18(12):e323 [FREE
Full text] [doi: 10.2196/jmir.5870] [Medline: 27986644]

16. Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. 2020
Presented at: 37th International Conference on Machine Learning, PMLR 119; July 13-18, 2020; Virtual p. 1597-1607
URL: https://proceedings.mlr.press/v119/chen20j.html

17. van den Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding. arXiv. Preprint posted online
on January 22, 2019 2023 [doi: 10.48550/arXiv.1807.03748]

18. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 Dec 12 Presented at: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR); June 27-30, 2016; Las Vegas, NV p. 770-778 URL: http://openaccess.
thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html [doi: 10.1109/cvpr.2016.90]

19. Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and weakly supervised computational
pathology on whole-slide images. Nat Biomed Eng 2021 Jun;5(6):555-570 [FREE Full text] [doi:
10.1038/s41551-020-00682-w] [Medline: 33649564]

20. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv. Preprint posted online on January 30, 2017 2023
[doi: 10.48550/arXiv.1412.6980]

21. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: an imperative style, high-performance deep
learning llibrary. 2019 Dec 8 Presented at: 33rd International Conference on Neural Information Processing Systems;
December 8-14, 2019; Vancouver, BC p. 8026-8037 URL: https://dl.acm.org/doi/10.5555/3454287.3455008

22. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational
pathology using weakly supervised deep learning on whole slide images. Nat Med 2019 Aug 15;25(8):1301-1309 [FREE
Full text] [doi: 10.1038/s41591-019-0508-1] [Medline: 31308507]

23. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, et al. Deep learning-based classification of mesothelioma
improves prediction of patient outcome. Nat Med 2019 Oct 07;25(10):1519-1525 [doi: 10.1038/s41591-019-0583-3]
[Medline: 31591589]

24. Dietterich TG, Lathrop RH, Lozano-Pérez T. Solving the multiple instance problem with axis-parallel rectangles. Artificial
Intelligence 1997 Jan;89(1-2):31-71 [doi: 10.1016/s0004-3702(96)00034-3]

25. Meyer JS, Alvarez C, Milikowski C, Olson N, Russo I, Russo J, Cooperative Breast Cancer Tissue Resource. Breast
carcinoma malignancy grading by Bloom-Richardson system vs proliferation index: reproducibility of grade and advantages
of proliferation index. Mod Pathol 2005 Aug;18(8):1067-1078 [FREE Full text] [doi: 10.1038/modpathol.3800388] [Medline:
15920556]

26. Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, Members of the Cancer Committee‚ College of
American Pathologists. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast.
Arch Pathol Lab Med 2009 Jan;133(1):15-25 [FREE Full text] [doi: 10.5858/133.1.15] [Medline: 19123730]

27. Onitilo A, Engel J, Greenlee R, Mukesh B. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of
clinicopathologic features and survival. Clin Med Res 2009 Jun 1;7(1-2):4-13 [doi: 10.3121/cmr.2008.825]

JMIR Cancer 2023 | vol. 9 | e45547 | p. 13https://cancer.jmir.org/2023/1/e45547
(page number not for citation purposes)

Bae et alJMIR CANCER

XSL•FO
RenderX

http://dx.doi.org/10.1038/s41467-020-19334-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33199723&dopt=Abstract
https://europepmc.org/abstract/MED/31348505
https://europepmc.org/abstract/MED/31348505
http://dx.doi.org/10.1001/jamanetworkopen.2019.7700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31348505&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1361-8415(16)30183-9
http://dx.doi.org/10.1016/j.media.2016.10.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27865153&dopt=Abstract
http://dx.doi.org/10.1117/12.2293719
http://dx.doi.org/10.1002/jmri.26721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30924997&dopt=Abstract
https://doi.org/10.1038/s41598-019-54548-6
http://dx.doi.org/10.1038/s41598-019-54548-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31796817&dopt=Abstract
https://europepmc.org/abstract/MED/24563344
http://dx.doi.org/10.1007/978-1-4899-8032-8_4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24563344&dopt=Abstract
http://dx.doi.org/10.1038/nrc1430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15343274&dopt=Abstract
https://www.jmir.org/2016/12/e323/
https://www.jmir.org/2016/12/e323/
http://dx.doi.org/10.2196/jmir.5870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27986644&dopt=Abstract
https://proceedings.mlr.press/v119/chen20j.html
http://dx.doi.org/10.48550/arXiv.1807.03748
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://dx.doi.org/10.1109/cvpr.2016.90
https://europepmc.org/abstract/MED/33649564
http://dx.doi.org/10.1038/s41551-020-00682-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33649564&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.1412.6980
https://dl.acm.org/doi/10.5555/3454287.3455008
https://europepmc.org/abstract/MED/31308507
https://europepmc.org/abstract/MED/31308507
http://dx.doi.org/10.1038/s41591-019-0508-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31308507&dopt=Abstract
http://dx.doi.org/10.1038/s41591-019-0583-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31591589&dopt=Abstract
http://dx.doi.org/10.1016/s0004-3702(96)00034-3
https://linkinghub.elsevier.com/retrieve/pii/S0893-3952(22)04578-1
http://dx.doi.org/10.1038/modpathol.3800388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15920556&dopt=Abstract
https://meridian.allenpress.com/aplm/article-lookup/doi/10.5858/133.1.15
http://dx.doi.org/10.5858/133.1.15
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19123730&dopt=Abstract
http://dx.doi.org/10.3121/cmr.2008.825
http://www.w3.org/Style/XSL
http://www.renderx.com/


28. Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. 2018 Presented at: 35th International
Conference on Machine Learning, PMLR 80; July 10-15, 2018; Stockholm, Sweden p. 2127-2136 URL: https://proceedings.
mlr.press/v80/ilse18a.html

29. Tian Y, Sun C, Poole B, Krishnan D, Schmid C, Isola P. What makes for good views for contrastive learning? 2020 Dec
6 Presented at: NIPS'20: 34th International Conference on Neural Information Processing Systems; December 6-12, 2020;
Vancouver, BC p. 6827-6839 URL: https://dl.acm.org/doi/abs/10.5555/3495724.3496297

30. Chaitanya K, Erdil E, Karani N, Konukoglu E. Contrastive learning of global and local features for medical image
segmentation with limited annotations. 2020 Dec 6 Presented at: NIPS'20: 34th International Conference on Neural
Information Processing Systems; December 6-12, 2020; Vancouver, BC p. 12546-12558 URL: https://dl.acm.org/doi/abs/
10.5555/3495724.3496776

31. Dave I, Gupta R, Rizve MN, Shah M. TCLR: temporal contrastive learning for video representation. Comput Vis Image
Underst 2022 Jun;219:103406 [FREE Full text] [doi: 10.1016/j.cviu.2022.103406]

32. Xiong Y, Ren M, Urtasun R. LoCo: local contrastive representation learning. 2020 Dec 6 Presented at: NIPS'20: 34th
International Conference on Neural Information Processing Systems; December 6-12, 2020; Vancouver, BC p. 11142-11153
URL: https://dl.acm.org/doi/abs/10.5555/3495724.3496659

33. DeVries T, Taylor GW. Dataset augmentation in feature space. arXiv. Preprint posted online on February 17, 2017 2023
[doi: 10.48550/arXiv.1702.05538]

34. Kingma DP, Welling M. Auto-encoding variational Bayes. arXiv. Preprint posted online on December 20, 2013 2023 [doi:
10.48550/arXiv.1312.6114]

35. 3DHistoNet. GitHub. URL: https://github.com/nus-mornin-lab/3DHistoNet [accessed 2023-08-15]

Abbreviations
AR: androgen receptor
AUC: area under the curve
CNN: convolutional neural network
ER: estrogen receptor
H&E: hematoxylin and eosin
HER2: erb-B2 receptor tyrosine kinase 2
IHC: immunohistochemistry
IMAGENET: ImageNet-pretrained ResNet50
MIL: multiple instance learning
PR: progesterone receptor
SimCLR: Simple Framework for Contrastive Learning of Visual Representations
SSL: self-supervised learning

Edited by T de Azevedo Cardoso; submitted 15.01.23; peer-reviewed by T Camargo, D Hu; comments to author 16.06.23; revised
version received 07.07.23; accepted 21.07.23; published 05.09.23

Please cite as:
Bae K, Jeon YS, Hwangbo Y, Yoo CW, Han N, Feng M
Data-Efficient Computational Pathology Platform for Faster and Cheaper Breast Cancer Subtype Identifications: Development of a
Deep Learning Model
JMIR Cancer 2023;9:e45547
URL: https://cancer.jmir.org/2023/1/e45547
doi: 10.2196/45547
PMID: 37669090

©Kideog Bae, Young Seok Jeon, Yul Hwangbo, Chong Woo Yoo, Nayoung Han, Mengling Feng. Originally published in JMIR
Cancer (https://cancer.jmir.org), 05.09.2023. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Cancer, is properly cited. The complete bibliographic
information, a link to the original publication on https://cancer.jmir.org/, as well as this copyright and license information must
be included.

JMIR Cancer 2023 | vol. 9 | e45547 | p. 14https://cancer.jmir.org/2023/1/e45547
(page number not for citation purposes)

Bae et alJMIR CANCER

XSL•FO
RenderX

https://proceedings.mlr.press/v80/ilse18a.html
https://proceedings.mlr.press/v80/ilse18a.html
https://dl.acm.org/doi/abs/10.5555/3495724.3496297
https://dl.acm.org/doi/abs/10.5555/3495724.3496776
https://dl.acm.org/doi/abs/10.5555/3495724.3496776
https://doi.org/10.1016/j.cviu.2022.103406
http://dx.doi.org/10.1016/j.cviu.2022.103406
https://dl.acm.org/doi/abs/10.5555/3495724.3496659
http://dx.doi.org/10.48550/arXiv.1702.05538
http://dx.doi.org/10.48550/arXiv.1312.6114
https://github.com/nus-mornin-lab/3DHistoNet
https://cancer.jmir.org/2023/1/e45547
http://dx.doi.org/10.2196/45547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37669090&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

