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Abstract

Background: Cancer treatments can cause a variety of symptoms that impair quality of life and functioning but are frequently
missed by clinicians. Smartphone and wearable sensors may capture behavioral and physiological changes indicative of symptom
burden, enabling passive and remote real-time monitoring of fluctuating symptoms

Objective: The aim of this study was to examine whether smartphone and Fitbit data could be used to estimate daily symptom
burden before and after pancreatic surgery.

Methods: A total of 44 patients scheduled for pancreatic surgery participated in this prospective longitudinal study and provided
sufficient sensor and self-reported symptom data for analyses. Participants collected smartphone sensor and Fitbit data and
completed daily symptom ratings starting at least two weeks before surgery, throughout their inpatient recovery, and for up to
60 days after postoperative discharge. Day-level behavioral features reflecting mobility and activity patterns, sleep, screen time,
heart rate, and communication were extracted from raw smartphone and Fitbit data and used to classify the next day as high or
low symptom burden, adjusted for each individual’s typical level of reported symptoms. In addition to the overall symptom
burden, we examined pain, fatigue, and diarrhea specifically.

Results: Models using light gradient boosting machine (LightGBM) were able to correctly predict whether the next day would
be a high symptom day with 73.5% accuracy, surpassing baseline models. The most important sensor features for discriminating
high symptom days were related to physical activity bouts, sleep, heart rate, and location. LightGBM models predicting next-day
diarrhea (79.0% accuracy), fatigue (75.8% accuracy), and pain (79.6% accuracy) performed similarly.

Conclusions: Results suggest that digital biomarkers may be useful in predicting patient-reported symptom burden before and
after cancer surgery. Although model performance in this small sample may not be adequate for clinical implementation, findings
support the feasibility of collecting mobile sensor data from older patients who are acutely ill as well as the potential clinical
value of mobile sensing for passive monitoring of patients with cancer and suggest that data from devices that many patients

JMIR Cancer 2021 | vol. 7 | iss. 2 | e27975 | p. 1https://cancer.jmir.org/2021/2/e27975
(page number not for citation purposes)

Low et alJMIR CANCER

XSL•FO
RenderX

mailto:lowca@upmc.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


already own and use may be useful in detecting worsening perioperative symptoms and triggering just-in-time symptom management
interventions.

(JMIR Cancer 2021;7(2):e27975) doi: 10.2196/27975

KEYWORDS

mobile sensing; symptom; cancer; surgery; wearable device; smartphone; mobile phone

Introduction

Cancer treatments such as chemotherapy and surgery cause a
variety of symptoms and side effects that can impair subjective
quality of life and functioning. Across a variety of cancer types,
fatigue, pain, nausea, and other physical symptoms are highly
prevalent and often severe [1,2], and many patients experience
multiple symptoms simultaneously [3]. Patients who report
more significant symptoms tend to exhibit worse performance
status and functional ability [4,5]. Unfortunately, symptoms
remain undetected by clinicians up to half of the time [6,7],
limiting opportunities for timely and effective clinical
management and resulting in undue patient suffering and
functional impairment.

Remotely monitoring symptoms between hospital or clinic visits
may improve our ability to capture severe or bothersome
symptoms when they begin to emerge [8]. Smartphones, now
owned by 81% of adults and increasing proportions of older
adults, those living in rural areas, and all racial groups, offer
new opportunities for remote symptom monitoring [9]. Systems
leveraging smartphones for real-time patient-reported outcome
(PRO) assessment during outpatient chemotherapy have been
demonstrated to be feasible [10,11] and to reduce
chemotherapy-related morbidity [12]. Although daily PRO
symptom data are valuable, long-term assessment of PROs (eg,
over months or years of chemotherapy) is burdensome. Indeed,
previous work suggests that patients become significantly less
compliant at recording symptoms over time [13], with patient
compliance dropping to below 50% after 1 month in one
longitudinal study [14]. Developing a remote symptom
monitoring system that is less reliant on patient compliance may
enable longitudinal symptom tracking and management
throughout cancer treatment and even after treatment is
completed, when symptoms persist for many survivors.

Smartphones are equipped with a rich array of sensors capable
of measuring many behavioral and contextual variables,
including mobility, location, ambient light and noise, and social
interactions [15]. Most users keep their smartphones within
arm’s reach at all times and spend over 4 hours per day
interacting with the device [16]. Thus, smartphones can gather
digital traces as individuals go about their daily routines. From
these raw digital data, meaningful behavioral features such as
number of unique locations visited, number of outgoing calls
placed, and average level of ambient noise detected during the
night can be calculated to provide information about behavior
patterns in real-world contexts [17].

Smartwatches and other wearable commercial activity monitors
are also becoming more widely used, with about 1 in 5 adults
using a wearable device [9]. Wearable devices contain sensors

such as accelerometers and photoplethysmography which can
provide continuous information about activity, sleep, and
physiology (eg, heart rate). Together, these mobile sensing
technologies enable objective assessment of behavioral patterns
that may reflect worsening health status, including severe or
increasing symptoms. Moreover, this high-density, multimodal,
and objective data collection can be completed with minimal
burden to patients; this feature makes this approach highly
scalable and appropriate for remotely monitoring patients, even
older patients and those who are acutely ill and even over long
periods. Given evidence that physical activity and sleep
behaviors as well as heart rate have prognostic value in
oncology, technology that enables passive quantification of
these metrics holds considerable promise for clinical cancer
research [18-20].

Applying machine learning classification to smartphone sensor
data has been shown to accurately discriminate depressed from
nondepressed individuals [21], to recognize depressive and
manic episodes in patients with bipolar disorder [22-24], to
predict mental health indicators in schizophrenia [25], and to
detect binge drinking and other substance use [26]. These
methods can also shed light on which behavioral features are
most useful for detecting or predicting mental health states or
risky behaviors. Work applying this approach to passively detect
physical health status in patients with cancer is more limited,
but results from 14 recent small studies suggest that wearable
and smartphone sensor data are related to symptom burden,
quality of life, and other clinical oncology outcomes [27].

The perioperative context is an especially critical time for remote
patient monitoring, as complications after cancer surgery are
common and can escalate into re-admissions that may be
preventable if detected and managed earlier. Results from similar
studies of patients undergoing surgical oncology procedures
found that accelerometer data were useful for quantifying
differences in postoperative recovery [28] and for predicting
re-admission risk [29]. In this study, we aimed to examine
whether smartphone and wearable sensors can be useful in
detecting overall patient-reported symptom burden as well as
3 specific physical symptoms (fatigue, pain, and diarrhea)
among patients undergoing pancreatic cancer surgery, a complex
but potentially curative procedure with postoperative morbidity
rates as high as 40% [30].

Methods

Participants
Potential study participants were identified for the study by their
surgical oncology care team. Men and women aged 18 years or
older who were scheduled for pancreatic surgery at a large
academic cancer center were eligible and were enrolled at their
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preoperative clinic visit. Of 72 eligible and approached patients,
60 consented to participate in this study. Surgery was canceled
for 4 patients, and 2 withdrew from the study prior to surgery
due to poor health or feeling overwhelmed. An additional 10
had insufficient sensor data for analyses based on data cleaning
thresholds (described in detail later), leaving 44 participants in
our analytic sample (mean age 65.7 years, range 40-82; 41%
[18/44] female; 93% [41/44] white). Most patients were
undergoing surgery (75% [33/44] robotic, 16% [7/44] open, 9%
[4/44] laparoscopic) for pancreatic cancer (36/44, 82%), with
the remainder undergoing surgery for benign conditions (eg,
pancreatic cysts). Participants were enrolled from January to
September 2017.

Study Procedure
Study assessments began prior to surgery and continued during
inpatient recovery after surgery (mean 7-day stay, range 2-22)
and for 60 days after postoperative discharge. A total of 13/44
patients (30%) were re-admitted to the hospital at some point
during the 60 days. At their preoperative visit, participants were
provided with an Android smartphone with the AWARE app
installed [31]. AWARE was used to passively collect
smartphone sensor data, including movement and approximate
location of the phone, device use, metadata about call and SMS
events, and ambient light and noise levels. AWARE was also
used to collect patient-reported symptom ratings each morning;
participants rated the severity of 10 physical and psychological
symptoms (pain, fatigue, sleep disturbance, trouble
concentrating/remembering things, feeling sad or down, feeling
anxious or worried, shortness of breath, numbness or tingling,
nausea, diarrhea or constipation) on a scale from 0 (not present)
to 10 (as bad as you can imagine). These symptoms were
selected because they reflect common core symptoms during
oncology treatment [32] and the symptom severity rating format
was adapted from the MD Anderson Symptom Inventory [33].
AWARE stored this information on the device and transmitted
deidentified data to a secure server over a secure network
connection when the device was connected to Wi-Fi. Participants
were asked to keep the phone charged and with them at all times
and to use the phone for communication as much as possible.

Participants were also given a Fitbit Charge 2 device to wear
for the duration of the study, which they were invited to keep
after study completion. The Fitbit collected data about activity,
sleep, and heart rate. The Fitbit Charge 2 has been shown to
measure activity and sleep parameters with acceptable accuracy
in older free-living adults [34].

After study completion, participants returned the mobile phones
to the study team and received a compensation of US $150. The
University of Pittsburgh institutional review board approved
all study procedures.

Data Processing and Analytic Approach

Patient-Reported Symptoms
To compute daily symptom burden scores, we summed all 10
symptom ratings to create a composite reflecting total daily
symptom burden (mean 15, range 0-97). We then calculated the
mean daily symptom burden for each individual patient and
then subtracted individual means from each of that patient’s

daily symptom burden scores and categorized the resulting
residual into average or below average (residual of daily score
– individual mean ≤ 0) or high (residual of daily score –
individual mean > 0). This approach allowed us to classify each
day as a high or low symptom burden day, adjusting for each
individual’s typical level of reported symptoms. Approximately
35.99% (487/1353) of all days were classified as high symptom
days (proportion of high symptom days for individual patients
ranged from ranged from 0% [0/11] to 80% [8/10]). As the data
set was imbalanced, we used the support vector machine
synthetic minority over-sampling technique (SVM SMOTE) to
resample the minority class. We also examined 3 specific
physical symptoms (pain, fatigue, and diarrhea because these
were the most common in our sample) using a similar approach.

Passive Smartphone and Wearable Sensor Data
We computed day-level (24 hours from midnight to midnight)
behavioral features from both AWARE and Fitbit data using
our Reproducible Analysis Pipeline for Data Streams (RAPIDS)
[35]. Accelerometer, activity recognition, application, battery,
call, conversation, light, location, SMS text message, and screen
features were extracted from AWARE data. Heart rate, step,
and sleep features were extracted from Fitbit data. For sleep,
features were extracted for any sleep episodes that ended on
that day to capture both overnight main sleep and naps. In total,
we extracted 213 features from smartphone and Fitbit data;
feature descriptions can be found in RAPIDS documentation
[35,36]. We also included 3 additional features judged to be
important for symptom prediction: (1) days since surgery,
because symptoms tended to considerably increase immediately
after surgery and then decline over time; (2) most recent
symptom burden score, given that high symptom burden scores
today tended to predict high symptom burden tomorrow; and
(3) participant’s average symptom burden score up to current
time point, given the substantial between-participant variability
in the range of symptom severities reported. Because symptom
ratings were completed each morning, sensor data were used
to predict the next day’s symptom burden class.

We dropped sensor and symptom data from the date of surgery
(as devices were with caregivers while patients were in the
operating room) and from days that the patient was hospitalized
(both after surgery and during any subsequent re-admissions,
as we anticipated behavioral patterns to differ systematically in
the hospital and we are most interested in detecting symptoms
when patients are not in a health care setting).

To clean data, we first excluded days with less than 20 hours
of sensor data and participants with fewer than 5 days of sensor
data. We then dropped features missing more than 30% of values
(days) or with 0 variance as well as days missing more than
30% of values (features). We merged sensor data with high/low
symptom labels, then again filtered out participants with less
than 5 days of valid labeled sensor feature data. After data
cleaning, we had 1353 (mean 30.75, range 5-67 per patient)
days of sensor data including 142 features from 44 patients.

On average, participants were missing 7.25% of data values
(range 0%-19.08%). For each participant, we imputed
continuous missing data as follows: (1) missing features in the
training set (ie, subset of data used to train the model) were
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replaced with the average of the 2 closest days; (2) missing
features in the test set (ie, subset of data used to evaluate model
performance) were replaced with the last valid day’s feature
from the training set; and (3) if a participant is missing a specific
feature, replace it with the average from the rest of the
participants’ data. We imputed categorical missing data as
follows: (1) missing features were replaced with the mode of
that participant’s training data; (2) if a participant is missing a
specific feature, replace it with the mode of the remaining
participants’ training data.

Categorical features were converted into integer representation
via one-hot encoding. Because the scale of features will not
influence the results of tree-based algorithms (eg, light gradient
boosting machine [LightGBM]), we normalized numerical
features with either min–max, z-score, or scikit-learn package’s
robust scaler for the rest of the models. A total of 75 features
were selected via mutual information.

We evaluated a number of different binary classifiers, including
logistic regression, k-nearest neighbors, support vector machine,
random forest, gradient boosting, extreme gradient boosting,
and LightGBM. Model performance (ability of the model to
generate predicted binary class labels [0 vs 1] that match true
class labels) was compared with several baselines: majority
class, random weighted classifier, and decision tree using days
since surgery, most recent score, and average score (ie, the 3

nonsensor features used in our models). We used nested
cross-validation. Three-fold cross-validation was considered
for the inner loop to tune hyperparameters and leave-one-day-out
cross-validation was considered for the outer loop to evaluate
performance and calculate accuracy, precision, recall, F1, and
area under the receiver operating characteristic curve (AUC)
across all folds. Because our ultimate goal is real-time clinical
implementation of these algorithms, we trained models only on
past data from that participant as well as data from other
participants (ie, data collected after the test day were not
included in the training set for that fold). The code for feature
extraction and analysis is available online [37].

Results

Models using LightGBM performed best for the population
model. We used 0 as the random seed, 200 as the number of
boosted trees, and 128 as the maximum tree leaves. The learning
rate was chosen from {0.008, 0.01, 0.012} and the subsample
ratio of columns when constructing each tree was chosen from
{0.68, 0.7, 0.72}. Using this approach, models using smartphone
and wearable feature data were able to correctly predict whether
the next day would be a high symptom day with 73.5% accuracy
(0.611 recall for the high symptom class and 0.772 AUC). This
model surpassed the accuracy and performance of all 3 baseline
models (Table 1).

Table 1. Performance of population models classifying next-day symptom class.a

AUC
(%)

Macro F1b

(%)

F11
(%)

Recall1
(%)

Precision1
(%)

F10
(%)

Recall0
(%)

Precision0
(%)

Accuracy
(%)

Method

50.039.20.00.00.078.4100.064.564.5Baseline1: majority class

50.050.035.535.535.564.464.464.454.1Baseline2: random weighted classifier

65.164.955.557.054.074.473.375.567.5Baseline3: decision tree with nonsensor
features

77.270.962.261.163.279.780.478.973.5LightGBM

a0=average or lower than average symptom burden; 1=higher than average symptom burden.
bMacro F1 score refers to the average of the 2 F1 scores.

The most important features included the most recent symptom
burden score, days since surgery, average symptom burden
score, duration of active and exertional activity bouts, minimum
heart rate, number of unique activities, time spent at the most
frequent location, maximum ambient lux, total duration of time
awake and asleep, and total duration of the heart rate in cardio
zone (70%-84% of the participant’s maximum heart rate) and
peak zone (85%-100% of the participant’s maximum heart rate;
Figure 1). In this plot, features with many instances in red with
SHAP (SHapley Additive exPlanations) [38] value greater than
0 had a positive relationship with symptom burden (eg, longer
median duration of nonexertional episodes related to high
symptom burden), whereas those in blue had an inverse
association (eg, shorter total duration of active bouts related to
high symptom burden).

We also generated population models for diarrhea, fatigue, and
pain, respectively. All steps are the same as above except for
the target values. Instead of calculating the labels based on the
summation of all 10 symptom ratings, diarrhea score or fatigue
score or pain score is applied directly.

Like the overall symptom burden results, LightGBM models
outperformed all 3 baseline models and predicted next-day
diarrhea with 79.0% accuracy (AUC 83.41%), next-day fatigue
with 75.8% accuracy (AUC 80.29%), and next-day pain with
79.6% accuracy (AUC 83.48%; Table 2). Location features are
very important for diarrhea prediction, while step features and
sleep features are very important for fatigue prediction and pain
prediction, respectively. The most recent symptom burden score,
days since surgery, and average symptom burden score are the
most important features for all symptoms.
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Figure 1. Density scatter plot showing SHapley Additive exPlanation (SHAP) values for each feature, reflecting how much impact each feature has
on model output. Features with many instances in red with SHAP values greater than 0 are positively associated with symptom burden, while those
with many blue instances are inversely associated with symptom burden.

Table 2. Performance of population models classifying next-day diarrhea or fatigue or pain symptom class (1=higher than average) from wearable and
smartphone sensors.

AUC
(%)

Macro F1
(%)

F11
(%)

Recall1
(%)

Precision1
(%)

F10
(%)

Recall0
(%)

Precision0
(%)

Accuracy
(%)

Target (symptom) and method

Diarrhea

50.040.30.00.00.080.5100.067.467.4Baseline1: majority class

49.949.932.532.532.567.467.467.456.0Baseline2: random weighted classifier

71.070.361.264.957.979.577.282.073.2Baseline3: decision tree with nonsensor
features

83.476.368.369.467.384.383.785.079.0LightGBM

Fatigue

50.039.30.00.00.078.6100.064.764.7Baseline1: majority class

50.050.035.335.335.364.764.764.754.3Baseline2: random weighted classifier

65.064.655.458.253.073.871.875.967.0Baseline3: decision tree with nonsensor
features

80.373.565.765.565.981.481.581.275.8LightGBM

Pain

50.041.30.00.00.082.7100.070.470.4Baseline1: majority class

50.050.029.629.629.670.470.470.558.4Baseline2: random weighted classifier

69.969.757.658.856.581.781.082.474.4Baseline3: decision tree with nonsensor
features

83.575.665.766.065.485.585.385.779.6LightGBM
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Discussion

The purpose of this prospective longitudinal study was to
evaluate passive smartphone and wearable sensor features as
predictors of symptom burden in perioperative patients
undergoing pancreatic surgery. Results suggest that machine
learning models developed using mobile sensor data were more
accurate than non–sensor-based baseline models in predicting
whether the next-day patient-reported overall symptom burden
would be higher than average for that patient. The most
important features for symptom prediction included features
related to physical activity, heart rate, and location. Models also
accurately predicted next-day diarrhea, fatigue, and pain,
although the most important features in each model differed
across specific symptoms.

This work contributes to a small but growing literature
investigating associations between consumer mobile sensors
and clinical outcomes in oncology [27]. Similar to studies of
patients undergoing chemotherapy [39] and hematopoietic cell
transplant [40], features related to physical activity were most
strongly related to fluctuations in physical symptom severity.
Feature importance revealed that these were not simple features
such as daily step counts but rather features reflecting patterns
of activity and included measurements from both wearable Fitbit
devices (eg, number, total duration, and maximum duration of
active bouts) and smartphones (eg, duration of nonexertional
episodes from phone accelerometer, number of unique activities
recognized). Heart rate and sleep features were also important,
suggesting that future work in this area should consider using
wearable devices that enable collection of 24-hour behavioral
and physiological data and examination of circadian rest-activity
rhythms previously linked to outcomes in patients with cancer
[41].

Because wearable and smartphone sensor data can be collected
continuously as patients go about their daily lives, requiring
minimal effort or attention from patients or their caregivers,
mobile sensing offers an opportunity for long-term remote
patient monitoring over months or years of cancer treatment
and survivorship. This study supports the feasibility of collecting
mobile sensor data, even from patients who are seriously ill
during times of acute sickness and recovery. Despite undergoing
invasive surgery and (for most patients) grappling with one of
the deadliest cancer diagnoses, over 80% of participants had
sufficient sensor data for analyses. This is also noteworthy given
that the average age of patients was over 65 and that, as these
data were collected in 2017, participants varied considerably in
their comfort and familiarity with mobile technology.

Although models trained on past mobile sensor data
outperformed baseline models, model performance still may
not be adequate for clinical implementation. For example, recall
of the high overall symptom burden class (when timely clinical
action would be needed) was only 61%, meaning nearly 40%

of high symptom days would be missed by our model. This may
be due in part to the relatively small sample and data set, the
use of study-provided (rather than personal) smartphones, or
the powerful effect of major abdominal surgery and prolonged
hospitalization on patient symptom profiles as well as behavior.
Future studies with larger samples that collect data using their
own personal devices over a period with less dramatic shifts in
symptoms and behavior may yield better model performance.
In future studies with larger data sets more robust to class
imbalance, setting a higher threshold for severe symptoms
requiring care provider attention or intervention may also result
in more clinically useful models. Regardless, mobile sensor
data may be a useful complement to patient-reported symptom
data, allowing for a more personalized and adaptive delivery of
symptom ratings when behavioral fluctuations are detected,
reducing patient burden and improving early capture of
worsening side effects and symptoms. Predictive models based
on sensor and patient-reported data could also be used to deliver
symptom self-management instructions to patients, an approach
demonstrated to benefit patients undergoing pancreatic cancer
surgery [42].

Given the small data set, we focused on building population
models that used data from all other participants, which also
may have constrained model performance. Because each
participant had on average only 30 rows of data, individual
models were unstable, but with more training data could be
useful in learning patterns based on each participant’s behavior
and its relationship to symptoms and developing more accurate
predictions. Developing models based on similar subgroups of
participants (based on demographic, clinical, or behavioral
factors) could be a useful approach for future work and could
yield superior results to a single population model.

Strengths of the study include longitudinal sensor data collection
over a wide perioperative window, from presurgery to 60 days
after discharge following pancreatic surgery. We considered a
wide range of features from both wearable and smartphone
sensors and examined prediction of next-day overall symptom
burden as well as next-day pain, fatigue, and diarrhea
specifically. Our models were also trained on past data only so
that we could evaluate how well models could perform if
implemented in real-world clinical settings.

This study suggests that digital biomarkers may be useful in
predicting patient-reported symptom burden during cancer
treatment. In an ongoing study, we are following up on this
work by collecting 3 months of smartphone and wearable sensor
data as well as daily symptom reports from a large sample of
patients undergoing outpatient chemotherapy. With a larger
outpatient sample using their own smartphones, we hope to
improve upon the models developed here and to use real-time
next-day symptom predictions to deliver more timely and
personalized symptom management support.
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