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Abstract

Background: eHealth technologies have been found to facilitate health-promoting practices among cancer survivors with BMI
in overweight or obese categories; however, little is known about their engagement with eHealth to promote weight management
and facilitate patient-clinician communication.

Objective: The objective of this study was to determine whether eHealth use was associated with sociodemographic characteristics,
as well as medical history and experiences (ie, patient-related factors) among cancer survivors with BMI in overweight or obese
categories.

Methods: Data were analyzed from a nationally representative cross-sectional survey (National Cancer Institute’s Health
Information National Trends Survey). Latent class analysis was used to derive distinct classes among cancer survivors based on
sociodemographic characteristics, medical attributes, and medical experiences. Logistic regression was used to examine whether
class membership was associated with different eHealth practices.

Results: Three distinct classes of cancer survivors with BMI in overweight or obese categories emerged: younger with no
comorbidities, younger with comorbidities, and older with comorbidities. Compared to the other classes, the younger with
comorbidities class had the highest probability of identifying as female (73%) and Hispanic (46%) and feeling that clinicians did
not address their concerns (75%). The older with comorbidities class was 6.5 times more likely than the younger with comorbidities
class to share eHealth data with a clinician (odds ratio [OR] 6.53, 95% CI 1.08-39.43). In contrast, the younger with no comorbidities
class had a higher likelihood of using a computer to look for health information (OR 1.93, 95% CI 1.10-3.38), using an electronic
device to track progress toward a health-related goal (OR 2.02, 95% CI 1.08-3.79), and using the internet to watch health-related
YouTube videos (OR 2.70, 95% CI 1.52-4.81) than the older with comorbidities class.

Conclusions: Class membership was associated with different patterns of eHealth engagement, indicating the importance of
tailored digital strategies for delivering effective care. Future eHealth weight loss interventions should investigate strategies to
engage younger cancer survivors with comorbidities and address racial and ethnic disparities in eHealth use.

(JMIR Cancer 2020;6(2):e24137) doi: 10.2196/24137
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Introduction

More than 17 million cancer survivors reside in the United
States, and simulation models predict that the survivorship
population will increase to 22 million by January 2030 [1]. The
growing prevalence of cancer survivors represents a significant
health care challenge especially since they have higher risk for
treatment-related morbidities (eg, cardiovascular disease) and
cancer than the general population [2-4]. Obesity is considered
a major risk factor for chronic disease, modifiable with
energy-restricted, high-quality diets, and consistent physical
activity [5]. Yet the prevalence of obesity continues to increase
rapidly among cancer survivors [6] despite medical
recommendations to maintain a healthy weight [7]. The
prevalence of obesity among adult cancer survivors has
increased 10% since 1997, a significantly faster rate than among
those without a history of cancer [6]. However, several issues
restrict cancer survivors from accessing nutrition services,
including inadequate reimbursement coverage, providers’heavy
clinical load, and providers’ limited nutrition or behavior change
training [8,9]. To increase access to nutrition care, digital
technology support for weight management and health
promotion (eHealth) is being developed to facilitate healthy
lifestyle change [10-12] and patient-clinician communication
[13,14].

Many eHealth interventions for cancer survivors, delivered
through smartphone apps and internet websites, promote a
high-quality diet and physical activity through behavior change
techniques [15], such as goal-setting [16-21], self-monitoring
of behavior [16-27], modeling of behavior [28], and behavioral
feedback [16-19,21,24,26,28,29]. eHealth interventions have
shown some promise for assisting cancer survivors with
health-promoting behavior change and weight loss [30,31] yet
the one size fits all approach is unlikely to be effective for this
population [32]. Individuals in the increasingly culturally and
linguistically diverse survivor population may have different
medical experiences, as well as different digital access and
engagement [33]. The few studies [34-37] that have investigated
associations among eHealth use, sociodemographic
characteristics, and medical history examined the general
population rather than cancer survivors. In these studies [34-37],
researchers found poorer engagement in eHealth practices
among adults who are older, male, in a lower annual income
bracket, less healthy, or without a regular provider. Even less
is known about how different care experiences are associated
with different types of eHealth practices. However, a recent
study [38] found that negative medical experiences (ie, low
perceived patient-centeredness) were associated with greater
engagement in self-management eHealth practices only among
those with less education and not among those with more
education, suggesting that eHealth use can vary as a function
of sociodemographic factors and medical experiences. Further
investigation is warranted to understand how and why different
combinations of these factors are associated with varied eHealth
practices among cancer survivors with BMI in overweight or
obese categories. Latent class analysis is a statistical approach
that allows an investigation of how the intersection of several
patient-related factors are associated with eHealth use. This

type of analysis is useful when there are several variables that
can contribute to heterogeneity, such as that observed among
cancer survivors and can facilitate understanding to guide
optimization of eHealth promotion among different underlying
cancer survivor subgroups.

The primary objective of the study was to determine whether
distinct classes can be identified based on sociodemographic
characteristics, medical history, and medical experiences (eg,
patient-related factors) of cancer survivors with BMI in
overweight or obese categories. We also investigated whether
class membership was associated with eHealth practices for
weight management and patient-clinician communication among
cancer survivors with BMI in overweight or obese categories.

Methods

National Cancer Institute Health Information National
Trends Survey
National Cancer Institute’s Health Information National Trends
Survey (NCI HINTS) is an ongoing cross-sectional data
collection program for nationally representative data about
health- and cancer-related communication in the United States.
Details regarding the NCI HINTS sampling framework have
been previously published [39]. During 2017-2018,
self-administered questionnaires from NCI HINTS 5 Cycles 1
and 2 were mailed to households (address-based sampling).
Surveys were deemed ineligible if ≤49% of the first 2 sections
of the questionnaire were completed. The NCI HINTS 5 Cycles
1 and 2 comprised 6862 participants who returned their
questionnaires to investigators, with a final collective response
rate of 25%. Of these questionnaires, 6789 (99%) were
considered completed by study investigators. In our study,
participant data were excluded if respondents did not have a

cancer history (n=3735) and had a BMI <25 kg/m2 (n=2324).

Variables
All variables were categorical and were collected in NCI HINTS
5 Cycles 1 and 2. Sociodemographic variables included age,
gender, race/ethnicity, and education level. Also included in
the analysis were degree of weight above a healthy weight
(overweight, class I obesity; class II obesity; class III obesity
[40]), presence of medical conditions (diabetes, cardiovascular
disease, or depression; hypertension; arthritis), frequency of
medical visits in the past year, quality of care, health insurance
status, access to medical records, and access to a regular
provider. Medical experience characteristics included whether
patients felt that (1) their feelings and emotions were addressed
by clinicians, (2) they were involved in medical decisions, (3)
their clinicians made certain that they understood next steps of
care, (4) they received clear explanations from their clinicians,
and (5) they were confident in their ability to take care of their
own health. Response options for each medical experience
questionnaire item were dichotomous (yes or no).

Nine eHealth items (outcome variables) were available across
both cycles: access to a health app (1 item); use of electronic
means to seek personal medical information (2 items), use of
tablets or smartphones to track health and facilitate medical
discussions (4 items), and use of the internet as a health resource
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(2 items). Response options for these items were dichotomous
(yes or no). Since deidentified data were available for public
use from the National Cancer Institute, ethical approval was
not required for this secondary data analysis.

Statistical Analysis
All analyses were conducted using STATA statistical software
(version 15; StataCorp LLC). We used latent class analysis to
empirically identify classes for cancer survivors with BMI in
overweight or obese categories who exhibited similar
sociodemographic and psychosocial characteristics [41]. The
latent class model included sampling weights to account for the

study design and to generate estimates and make inferences that
reflect the population. The number of classes was selected using
the Akaike information criterion (AIC); Schwarz Bayesian
information criterion (BIC); Rissanen sample-size adjusted BIC;
entropy, with higher values indicating better classification of
individuals; and ease of interpretation (ie, the classes
distinguished differences from a practical perspective). We
examined a series of models, progressing from a 1-class model
to a 10-class model, and compared the models using AIC,
adjusted BIC, and entropy descriptive fit indices (Table 1) to
identify the optimal number of classes [42,43].

Table 1. Latent class model selection diagnostics.

EntropyAdjustedc BICBICbAICaG2 deviance statisticClasses, n

1.007925.358026.967879.997815.991

0.567646.527852.917554.367424.362

0.747409.737720.927270.807074.803

0.777378.057794.027192.336930.334

0.747406.127926.877173.616845.615

0.777321.307946.837042.006648.006

0.827360.408090.727034.326574.327

0.827346.378181.486973.516447.518

0.837312.298252.196892.656300.659

0.837362.928407.606896.496238.4910

aAIC: Akaike information criterion.
bBIC: Bayesian information criterion.
cRissanen sample size adjustment.

We determined that the 3-class model was optimal (AIC
7270.80; adjusted BIC 7409.73; entropy 0.74). Specifically, all
indicators of model fit (decreased AIC and adjusted BIC, higher
entropy) revealed the 2-class model fit better than the 1-class
model, and the 3-class model fit better than the 2-class model.
Although the slightly lower AIC and adjusted BIC values, and
slightly higher entropy indicated the 4-class model fit better
than the 3-class model, the 3-class model demonstrated both
(1) a relatively larger decrease in the AIC and adjusted BIC
values (2-class to 3-class compared to 3-class to 4-class) and
(2) and a similar entropy (0.74 in 3-class vs 0.77 in 4-class).
Also, the 4-class model seemed to separate Class 1 from the
3-class model into 2 distinct classes; however, these classes did
not differ in any meaningful or interpretable way. The 3-class
model provided the most clinically interpretable groups.

Maximum conditional probabilities for the categorical indicator
variables (ie, sociodemographic, medical, and psychosocial
factors) were used to characterize each class. Variables with
probabilities greater than 0.50 were highly endorsed [44]. We
used logistic regression to examine whether latent class
membership was associated with different eHealth behaviors.
Each eHealth behavior was modeled separately, using the latent
classes as predictors in the model. We evaluated differences
between classes using the pseudo class method, with 20

imputations. The pseudo-class method [45] provides
conservative estimates of standard error and perform optimally
for models with moderate entropy (0.60) and competitively for
models with large entropy (0.80). Logistic regression analyses
did not adjust for covariates since classes were derived from
sociodemographic factors, medical history, and medical
experiences, and thus their covariance was already incorporated
into the analysis. We present odds ratios (ORs) and 95%
confidence intervals from the logistic regression models.

Results

Sample Characteristics
The sample of cancer survivors with BMI in overweight or
obese categories (N=730) had a mean age of 66.8 (SD 11.9)
years, and these participants were mostly non-Hispanic White
individuals (499/730, 76.3%) (Table 2). There was a slightly
higher proportion of females (396/730, 55.1%) than males
(323/730, 44.9%). Most had a BMI considered overweight
(383/730, 52.5%), had health insurance (694/730, 97.3%), and
a regular health care provider (624/730, 86.4%). Approximately
half of the participants had been offered online access to medical
records (313/730, 51.4%). Overall, for all 3 classes, participants
had nearly equal probability of being offered online access to
medical records (range 43%-54%).

JMIR Cancer 2020 | vol. 6 | iss. 2 | e24137 | p. 3http://cancer.jmir.org/2020/2/e24137/
(page number not for citation purposes)

Lin et alJMIR CANCER

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Demographic characteristics of the sample (N=730).

Value, n (%)Characteristic

Age

58 (8.1)Less than 49 years

226 (31.7)50-64 years

250 (35.1)65-74 years

178 (25.0)75 years or older

Gender

323 (44.9)Male

396 (55.1)Female

Race/ethnicity

499 (76.3)Non-Hispanic White

78 (11.9)Black or African American

54 (8.3)Hispanic

23 (3.5)Hawaiian/Pacific Islander, Alaskan Native, Asian, or Multiraciala

Education

202 (28.2)High School or less

239 (33.4)Some college, professional school

275 (38.4)College graduate

BMI category [40]

383 (52.5)Overweight

214 (29.3)Obese, class I

75 (10.3)Obese, class II

58 (7.9)Obese, class III

Diabetes, heart condition, or depression

405 (57.0)Present

306 (43.0)Absent

Hypertension

449 (62.3)Present

272 (37.7)Absent

Arthritis

351 (48.5)Present

373 (51.5)Absent

How many times did you go to a health professional (doctor, nurse) for care

39 (5.4)None

292 (40.6)1-3 times

388 (54.0)4+ times

Quality of care

300 (44.8)Excellent

231 (34.5)Very good

112 (16.7)Good

23 (3.4)Fair

3 (0.4)Poor

Health insurance
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Value, n (%)Characteristic

694 (97.3)Yes

19 (2.7)No

Offered online access to your medical records

313 (51.4)Yes

296 (48.6)No

Confidence in own ability to take care of health

7 (1.0)Completely confident

30 (4.1)Very confident

189 (26.1)Somewhat confident

345 (47.7)A little confident

153 (21.1)Not confident at all

Regular provider

624 (86.4)Yes

98 (13.6)No

Feelings addressed

642 (95.8)Yes

28 (4.2)No

Involved in decisions

660 (97.9)Yes

14 (2.1)No

Understood next steps

666 (99.1)Yes

6 (0.9)No

Explained clearly

668 (99.3)Yes

5 (0.7)No

aThese data were grouped for statistical analysis (due to the very small number of participants and model fit).

Multimedia Appendix 1 shows the percentage of participants
within each class and the resulting conditional response
probabilities of endorsing items, given class membership.

Classes
Class 1 accounted for 41% of the population (Multimedia
Appendix 1). The majority of class 1 was less than 65 years old
(77%), had higher than high school education level (80%), and
identified as being non-Hispanic White individuals (80%). In
this class, there was a higher probability of having a BMI in
overweight and obese class I categories (91%) and a lower
probability of having medical conditions—diabetes,
cardiovascular disease, or depression; hypertension;
arthritis—than in the other classes (range 9%-31%). Members
in class 1 predominantly had health insurance (98%), visited a
regular provider (82%), and felt little to somewhat confident in
their ability to take care of their own health (73%). Most
reported having positive interactions with their clinicians: they
believed that their feelings were addressed (95%), felt involved
in decisions (100%), understood next steps in care (100%), and

felt that health-related topics were clearly explained (100%).
Class 1 was subsequently labeled younger with no comorbidities.

Class 2 represented the smallest class accounting for 4% of the
population. A slight majority of its members were less than 64
years old (57%; Multimedia Appendix 1). Compared to the
other classes, class 2 had the highest probability of identifying
as female (73%) and having a high school education level or
less (60%). The probability of class members identifying as
Black or Hispanic adults (63%) was substantially higher than
in classes 1 (17%) and 3 (16%). Class 2 had the highest
probability of having a BMI in obese class II and III categories
(63%) and having medical conditions (% range: 48-95%), and
probabilities for this class of seeking care from a health care
professional (31%), having a regular provider (43%), and having
health insurance (24%) were lower than for other classes. Class
2 had a higher probability of reporting low quality of care (37%)
than the other classes; they were more likely to believe their
feelings were not addressed by health care professionals (75%)
and to feel uninvolved in decisions (73%). Yet there was a high
probability of feeling—at a minimum—very confident in their

JMIR Cancer 2020 | vol. 6 | iss. 2 | e24137 | p. 5http://cancer.jmir.org/2020/2/e24137/
(page number not for citation purposes)

Lin et alJMIR CANCER

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ability to take care of their own health (56%). Class 2 was
subsequently labeled younger with comorbidities.

Class 3 represented the largest class and accounted for 55% of
the population (Multimedia Appendix 1). The majority of class
3 was 65 years old or above (71%), identified as non-Hispanic
White individuals (83%), and had a BMI within either
overweight or obese class I categories (81%). There was an
even distribution regarding education level among its members.
Members of class 3 predominantly had health insurance (99%),
had a regular provider (90%), expressed feeling a little to
somewhat confident in their ability to take care of health (77%),
and reported positive interactions with their clinicians, similar
to class 1. Specifically, members in class 3 felt that in medical
care, their feelings were addressed (97%), they were involved
in decisions (99%), understood the next steps in care (100%),
and felt that things were explained clearly (100%). There were
differences in medical outcomes between classes 1 and 3, with
class 3 having higher probabilities of being diagnosed with all
comorbidities—diabetes, cardiovascular disease, or depression;
hypertension; arthritis except for obesity (range 64%-80% vs

9%-31%). Class 3 was subsequently labeled older with
comorbidities.

Association of eHealth Behaviors and Latent Classes
Table 3 presents the associations of eHealth behaviors with
latent classes. Logistic regression analyses indicated that,
compared with the younger with comorbidities class, the older
with comorbidities class had more than a 6-fold increase in the
odds of sharing health information from an electronic device
or smartphone with a health professional (OR 6.53, 95% CI
1.08-39.43). There were no significant differences in the
likelihood of engaging in eHealth behaviors between younger
with no comorbidities and younger with comorbidities classes
(Table 3). The younger with no comorbidities class had greater
odds than the older with comorbidities class of engaging in
self-management eHealth practices that do not involve a health
care provider, including using a computer to look for health
information (OR 1.93, 95% CI 1.10-3.38), using a tablet or
smartphone to track progress toward a health-related goal (OR
2.02, 95% CI 1.08-3.79), and using the internet to watch
health-related videos on YouTube (OR 2.70, 95% CI 1.52-4.81)
(Table 3).

Table 3. Logistic regression models predicting eHealth behaviors using latent classes as predictors.

Older with comorbidities vs

younger with comorbiditiesa
Younger with no comorbidities

vs older with comorbiditiesa
Younger with no comorbidities

vs younger with comorbiditiesa
eHealth Behaviors

95% CIOdds ratio95% CIOdds ratio95% CIOdds ratio

(0.18, 3.63)0.80(0.87, 2.96)1.61(0.29, 5.58)1.28On your tablet or smartphone, do you have any
apps related to health and wellness?

(0.39, 5.11)1.41(1.10, 3.38)1.93(0.73, 10.14)2.73In the past 12 months have you used a computer,
smart phone, or other electronic means to look for
health or medical information for yourself?

(0.34, 5.14)1.33(0.99, 2.67)1.63(0.55, 8.48)2.16In the past 12 months have you used a computer,
smart phone, or other electronic means to look up
medical test results?

(0.23, 5.46)1.13(1.08, 3.79)2.02(0.47, 11.02)2.28Has your tablet or smartphone helped you track
progress on a health-related goal, such as quitting
smoking, losing weight, or increasing physical
activity?

(0.20, 5.71)1.08(0.63, 2.15)1.16(0.24, 6.42)1.25Has your tablet or smartphone helped you make
a decision about how to treat an illness or condi-
tion?

(0.31, 12.50)1.97(0.37, 1.23)0.67(0.22, 7.85)1.33Has your tablet or smartphone helped you in dis-
cussions with your health care provider?

(1.08, 39.43)6.53(0.27, 1.13)0.56(0.57, 23.22)3.63Have you shared health information from either
an electronic monitoring device or smartphone
with a health professional within the last 12
months?

(0.12, 16.19)1.40(0.68, 9.16)2.50(0.12, 37.70)2.11In the last 12 months, have you used the internet
to participate in an online forum or support group
for people with a similar health or medical issue?

(0.15, 2.99)0.68(1.52, 4.81)2.70(0.42, 8.11)1.84In the last 12 months, have you used the internet
to watch a health-related video on YouTube?

aThis class was used as the reference.
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Discussion

Despite the substantial investment in advancing eHealth to
extend patient care [46], there is insufficient evidence about
how sociodemographic factors, medical history, and medical
experiences affect how different groups of cancer survivors use
eHealth. As obesity is both prevalent and a significant risk factor
for future multimorbidity among cancer survivors, our study
objective was to characterize patterns of eHealth use among
distinct classes of cancer survivors with BMI in overweight or
obese categories. Three classes emerged: younger with no
comorbidities; younger with comorbidities; older with
comorbidities. People in the older with comorbidities class were
less likely to use eHealth self-management technologies than
those in the younger-no comorbidities class. However, when
compared to those in the younger with comorbidities class,
people in the older with comorbidities class were more likely
to share health information from an eHealth device with a health
professional.

Among cancer survivors with comorbidities, older adults were
more likely than younger adults to share their eHealth data with
a health care provider in order to facilitate patient-clinician
communication. Our finding supports the supposition that
eHealth is a promising tool to facilitate patient-clinician
communication for older cancer survivors with comorbidities.
In comparison, those in the younger with comorbidities class
were less likely to have a regular provider, have health
insurance, feel involved in medical decisions, or feel they
understood next steps of care. They were also more likely to
identify as Black or Hispanic individuals and have a lower
education level. The characteristics observed in the younger
with comorbidities class were consistent with previous reports
that Black and Hispanic participants receive less health care
than non-Hispanic White participants, and that cancer survivors
with lower education are less likely to discuss health-promoting
behaviors [47-49]. We also observed that the younger with
comorbidities class did not emerge within the 2-class model.
This observation suggests that minority groups among cancer
survivors with BMI in overweight or obese categories can easily
go unnoticed and underrepresented in health care despite having
different medical experiences and being at increased risk of
having a medical condition, relative to non-Hispanic White
adults. A valuable opportunity exists for clinicians and
researchers to identify strategies that will improve the medical
experiences of underserved minority groups, while leveraging
eHealth technology to facilitate health-promoting behaviors.

Compared to those in the older with comorbidities class, cancer
survivors in the younger with no comorbidities class were more
likely to use a computer to research health information, use a
tablet or smartphone to track progress on a health-related goal,
and watch health-related videos on YouTube—all types of
self-management eHealth behaviors. These differences seemed
to be largely driven by the combination of age and medical
history as the 2 classes shared similar characteristics for other
sociodemographic factors and medical experiences. However,
those in the older with comorbidities and younger with no
comorbidities classes showed no differences for other eHealth
behaviors, such as (1) having health-related apps on their

devices, (2) accessing health records for test results, (3) using
electronic devices to treat a condition with clinicians, and (4)
participating in a health-related support group. Collectively,
these results demonstrate that although younger age and better
health status jointly predict greater engagement in using eHealth
for self-management, there is no generational divide in having
health-related apps, accessing electronic health records, and
sharing eHealth data with clinicians among cancer survivors
with BMI in overweight or obese categories. Our results show
agreement with mixed evidence that age is associated with
eHealth use [34,35,37], and echo findings indicating that better
health was associated with greater eHealth use to track health
and goals [34,35].

The strengths of this study include the use of a large nationwide
sample drawn from NCI HINTS which allowed us to use
weightings to generate nationally representative estimates.
Although the sample analyzed for the current study comprised
less than 5% of the NCI HINTS study sample, the estimates are
reflective of the population of cancer survivors with BMI in
overweight or obese categories. Despite several eHealth weight
management interventions in survivor populations, this is the
first study to investigate how eHealth is used to manage health
and relate to health care providers [50]. An additional strength
was the ability to investigate different forms of eHealth usage
separately, rather than in aggregate, which allowed us to identify
who was more likely to use specific eHealth features to promote
weight management and patient-clinician communication. A
few limitations should be noted as well. We were unable to
determine whether eHealth use would differ for diet, physical
activity, or smoking behaviors since the NCI HINTS items did
not distinguish between types of health-promoting behaviors.
Another limitation is that eHealth use and cancer status were
self-reported and, therefore, susceptible to recall bias. Although
the data were weighted to generate nationally representative
estimates, generalizability may still be limited by reliance on
participant self-selection. Replication is warranted using
different nationally representative study samples with further
investigation on environmental factors, such as rural-urban
differences [51]. Additionally, the temporal relationship between
patient-related factors and eHealth use has yet to be established.

There is growing interest in the development and usability of
eHealth to guide health-promoting behaviors for cancer
survivors [52-54], particularly as there is limited access to
nutrition services at cancer centers [9]. This study provides new
evidence about the feasibility and usability of eHealth among
cancer survivors with BMI in overweight or obese categories
by investigating how sociodemographic factors, medical history,
and medical experiences co-vary with eHealth behaviors. While
our results suggest that all cancer survivors use eHealth, some
groups engage with eHealth technologies in different ways.
Thus, this study highlights the importance of considering the
eHealth needs and usage patterns of different types of cancer
survivors when developing digital interventions to support health
promotion and patient-clinician communication. Our study also
reveals that race/ethnicity, as well as medical attributes and
experiences, predict eHealth use—lending support to the idea
that sociodemographic, medical history, and clinician
interactions can collectively influence eHealth engagement.
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Further efforts to develop eHealth recommendations tailored
for different groups of cancer survivors are needed to optimize

survivors’ability to use digital tools to promote health behaviors
and reduce treatment-related morbidities and obesity.
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